期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
A High-order Accuracy Explicit Difference Scheme with Branching Stability for Solving Higher-dimensional Heat-conduction Equation 被引量:3
1
作者 MA Ming-shu MA Ju-yi +1 位作者 GU Shu-min ZHU Lin-lin 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期446-452,共7页
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio... A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4). 展开更多
关键词 heat-conduction equation explicit difference scheme high-order accuracy branching stability
下载PDF
A FAMILY OF HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEMES WITH BRANCHING STABILITY FOR SOLVING 3-D PARABOLIC PARTIAL DIFFERENTIAL EQUATION
2
作者 马明书 王同科 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第10期1207-1212,共6页
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t... A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)). 展开更多
关键词 high-order accuracy explicit difference scheme branching stability 3-D parabolic PDE
下载PDF
A NEW HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THREE-DIMENSIONAL PARABOLIC EQUATIONS
3
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期497-501,共5页
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam... In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)). 展开更多
关键词 high-order accuracy explicit difference scheme three-dimensional parabolic equation
全文增补中
Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
4
作者 Daosheng XU Dehui CHEN Kaixin WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期615-626,共12页
Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, th... Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, the properties of high-order finite difference schemes are studied based on idealized numerical testing, for the purpose of their application in the Global/Regional Assimilation and Prediction System(GRAPES) model. It is found that the pros and cons due to grid staggering choices diminish with higher-order schemes based on linearized analysis of the one-dimensional gravity wave equation. The improvement of higher-order difference schemes is still obvious for the mesh with smooth varied grid distance. The results of discontinuous square wave testing also exhibits the superiority of high-order schemes. For a model grid with severe non-uniformity and non-orthogonality, the advantage of high-order difference schemes is inapparent, as shown by the results of two-dimensional idealized advection tests under a terrain-following coordinate. In addition, the increase in computational expense caused by high-order schemes can be avoided by the precondition technique used in the GRAPES model. In general, a high-order finite difference scheme is a preferable choice for the tropical regional GRAPES model with a quasi-uniform and quasi-orthogonal grid mesh. 展开更多
关键词 high-order difference scheme DISPERSION UNIFORM ORTHOGONAL computational efficiency
下载PDF
A-HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THE EQUATION OF TWO-DIMENSIONAL PARABOLIC TYPE
5
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第11期1075-1079,共5页
In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the... In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ). 展开更多
关键词 high-order accuracy explicit difference scheme equation of twodimensional parabolic type
下载PDF
A CLASS OF COMPACT UPWIND TVD DIFFERENCE SCHEMES 被引量:1
6
作者 涂国华 袁湘江 +1 位作者 夏治强 呼振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第6期765-772,共8页
A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can e... A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities. 展开更多
关键词 high-order difference schemes compact schemes TVD schemes shock- vortex shock-boundary
下载PDF
Analyses of the Dispersion Overshoot and Inverse Dissipation of the High-Order Finite Difference Scheme
7
作者 Qin Li Qilong Guo Hanxin Zhang 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第6期809-824,共16页
Analyses were performed on the dispersion overshoot and inverse dissipation of the high-order finite difference scheme using Fourier and precision analysis.Schemes under discussion included the pointwise-and staggered... Analyses were performed on the dispersion overshoot and inverse dissipation of the high-order finite difference scheme using Fourier and precision analysis.Schemes under discussion included the pointwise-and staggered-grid type,and were presented in weighted form using candidate schemes with third-order accuracy and three-point stencil.All of these were commonly used in the construction of difference schemes.Criteria for the dispersion overshoot were presented and their critical states were discussed.Two kinds of instabilities were studied due to inverse dissipation,especially those that occur at lower wave numbers.Criteria for the occurrence were presented and the relationship of the two instabilities was discussed.Comparisons were made between the analytical results and the dispersion/dissipation relations by Fourier transformation of typical schemes.As an example,an application of the criteria was given for the remedy of inverse dissipation in Weirs&Mart´ın’s third-order scheme. 展开更多
关键词 high-order difference scheme dispersion overshoot inverse dissipation
原文传递
An improved two-dimensional unstructured CE/SE scheme for capturing shock waves 被引量:1
8
作者 付峥 刘凯欣 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期1-9,共9页
In this paper, the accuracy of Chang's unstructured space-time conservation element and solution element (CE/SE) scheme is analysed for the first time. Based on a redefinition of conservation elements and solution ... In this paper, the accuracy of Chang's unstructured space-time conservation element and solution element (CE/SE) scheme is analysed for the first time. Based on a redefinition of conservation elements and solution elements, an improved two-dimensional (2D) unstructured CE/SE scheme with an adjustable parameter β is proposed to accurately capture shock waves. The new scheme can be applied to any type of grid without special treatnmnt. Compared with Chang's original parameter a, larger/5 dose not cost extra computational resources. Numerical tests reveal that the new scheme is not only clear in physical concept, compact and highly accurate but also more capable of capturing shock waves than the popular fifth-order accurate weighted essentially non-oscillatory scheme. 展开更多
关键词 CE/SE method unstructured mesh high-order accurate scheme shock waves
下载PDF
Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering-Application to circular footing and deep tunnel in saturated ground
9
作者 Simon Heru Prassetyo Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期259-279,共21页
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat... Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%. 展开更多
关键词 Hydro-mechanical(H-M) interaction Explicit coupling technique Alternating direction explicit(ADE) scheme high-order finite difference(FD) Non-uniform grid Axisymmetric consolidation Circular footing Deep tunnel in saturated ground
下载PDF
Numerical study on the gas-kinetic high-order schemes for solving Boltzmann model equation 被引量:2
10
作者 LI ZhiHui PENG AoPing +1 位作者 ZHANG HanXin DENG XiaoGang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第9期1687-1701,共15页
The high-order compact finite difference technique is introduced to solve the Boltzmann model equation, and the gas-kinetic high-order schemes are developed to simulate the different kinetic model equations such as th... The high-order compact finite difference technique is introduced to solve the Boltzmann model equation, and the gas-kinetic high-order schemes are developed to simulate the different kinetic model equations such as the BGK model, the Shakhov model and the Ellipsoidal Statistical (ES) model in this paper. The methods are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the inner flows of normal shock wave for different Mach numbers, and the two-dimensional flows past a circular cylinder and a NACA 002 airfoil to verify the reliability of the present high-order algorithm and simulate gas transport phenomena covering various flow regimes. The computed results are found in good agreement both with the theoretical prediction from continuum to rarefied gas dynamics, the related DSMC solutions, and with the experimental results. The numerical effect of the schemes with the different precision and the different types of Boltzmann collision models on the computational efficiency and computed results is investigated and analyzed. The numerical experience indicates that an approach developing and applying the gas-kinetic high-order algorithm is feasible for directly solving the Boltzmann model equation. 展开更多
关键词 Boltzmann model equation velocity distribution function high-order compact scheme discrete velocity ordinate method gas-kinetic high order accurate algorithm
原文传递
高精度强紧致三点格式的构造及边界条件的处理 被引量:6
11
作者 王保国 刘淑艳 +1 位作者 闫为革 李福庆 《北京理工大学学报》 EI CAS CSCD 北大核心 2003年第1期13-18,共6页
在紧致格式的基础上 ,提出了在 3个网格结点的框架下构造各阶奇次偏导数与偶次偏导数以及混合偏导数的高精度差分逼近方法和通用表达式 .首次提出了边界条件处理的具体方法 .本格式在构造时所涉及的网格结点数少 ,而且内点与边界点处具... 在紧致格式的基础上 ,提出了在 3个网格结点的框架下构造各阶奇次偏导数与偶次偏导数以及混合偏导数的高精度差分逼近方法和通用表达式 .首次提出了边界条件处理的具体方法 .本格式在构造时所涉及的网格结点数少 ,而且内点与边界点处具有相同的格式精度 .另外 ,由于内点与边界点处的各阶导数均采用统一求解块三对角阵的快速求解措施 ,因此该方法具有简捷、高效和通用的特点 ,并且易于推广到多维流场计算 . 展开更多
关键词 高精度强紧致三点格式 边界条件 差分逼近 三维流场 数值计算 差分格式
下载PDF
对流扩散方程的变步长摄动有限差分格式 被引量:13
12
作者 李桂波 李明军 高智 《水动力学研究与进展(A辑)》 CSCD 北大核心 2005年第3期293-299,共7页
摄动有限差分(PFD)方法是构造高精度差分格式的一种新方法。变步长摄动有限差分方法是等步长摄动有限差分方法的发展和推广。对需要局部加密网格的计算问题,变步长PFD格式不需要对自变量进行数学变换,且和等步长PFD格式一样,具有如下的... 摄动有限差分(PFD)方法是构造高精度差分格式的一种新方法。变步长摄动有限差分方法是等步长摄动有限差分方法的发展和推广。对需要局部加密网格的计算问题,变步长PFD格式不需要对自变量进行数学变换,且和等步长PFD格式一样,具有如下的共同特点:从变步长一阶迎风格式出发,通过把非微商项(对流系数和源项)作变步长摄动展开,展开幂级数系数通过消去摄动格式修正微分方程的截断误差项求出,由此获得高精度变步长PFD格式。该格式在一、二和三维情况下分别仅使用三、五和七个基点,且具有迎风性。文中利用变步长PFD格式对对流扩散反应模型方程,变系数方程及Burgers方程等进行了数值模拟,并与一阶迎风和二阶中心格式及其问题的精确解作了比较。数值试验表明,与一阶迎风和二阶中心格式相比,变步长PFD格式具有精度高,稳定性与收敛性好的特点。变步长PFD格式与等步长PFD格式相比,变步长PFD解在薄边界层型区域的分辨率得到了明显的提高。 展开更多
关键词 高精度差分格式 对流扩散方程 变步长摄动有限差分方法
下载PDF
强紧致六阶格式的构造及应用 被引量:4
13
作者 王保国 刘淑艳 +2 位作者 潘美霞 高雪莲 殷蕾 《工程热物理学报》 EI CAS CSCD 北大核心 2003年第5期761-763,共3页
本文在三点格式的框架下,构造了强紧致六阶格式。与目前计算流体力学和气动热力学中常用的数值计算格式相比,该格式所涉及的网格点数少,而且内点与边界点能达到相同精度。几个典型算例表明:该格式能达到预期的高精度,并且计算简单,方便... 本文在三点格式的框架下,构造了强紧致六阶格式。与目前计算流体力学和气动热力学中常用的数值计算格式相比,该格式所涉及的网格点数少,而且内点与边界点能达到相同精度。几个典型算例表明:该格式能达到预期的高精度,并且计算简单,方便,可行。 展开更多
关键词 高精度差分格式 三点格式 强紧致格式
下载PDF
用有限区域风速场准确求解流函数和速度势场的方法 被引量:9
14
作者 朱宗申 朱国富 张林 《大气科学》 CSCD 北大核心 2009年第4期811-824,共14页
流函数和速度势是气象业务和研究中常用于表述风速的一组变量。用有限区域风速场,使用有限差分方法求解得到的流函数和速度势场重建初始风速场,由于受区域边界的限制往往有明显的偏差。虽然有许多求解方法的研究,但是,至今仍尚未见到一... 流函数和速度势是气象业务和研究中常用于表述风速的一组变量。用有限区域风速场,使用有限差分方法求解得到的流函数和速度势场重建初始风速场,由于受区域边界的限制往往有明显的偏差。虽然有许多求解方法的研究,但是,至今仍尚未见到一种真正准确的求解计算方案。首先,介绍用Arakawa A网格和D网格分布的有限区域风速场求解流函数和速度势场的一般有限差分计算方法,探讨用它们的解重建风速场产生误差的原因。然后,针对这些原因,对给定的有限区域,通过线性外推初始风速场,扩展求解计算区域,使用协调、一致的有限差分格式方案,准确计算求解区域的边界有旋风速、散度风速和速度势的定解边界条件,以及恰当选择流函数、速度势、涡度和散度等变量的分布网格,设计了用上述两种网格分布的风速场准确求解流函数、速度势场的方案,并对其正确性加以证明,它们可以推广应用于其他Arakawa网格。用实际资料试验同样显示,方案避免了重建风速场误差的出现,与初始风速场相比,全场风速最大偏差精度达到10-12m/s或以上,在计算机精度造成的计算误差影响范围内。本文的研究很好解决了长期以来用有限区域风速场、使用有限差分方法无法准确求解流函数和速度势场的问题。 展开更多
关键词 有限区城 准确求解流函数和速度势 误差分析 Arakawa网格方案 有限差分方法
下载PDF
一类三维时空二阶精度高分辨率MmB差分格式 被引量:3
15
作者 吴开腾 宁建国 《计算力学学报》 CAS CSCD 北大核心 2003年第6期678-683,701,共7页
直接把Nessyahu和Tadmor[1,2]的思想推广到三维非线性双曲型守恒律情形,以交错形式Lax-Friedrichs格式为基本模块,使用二阶分片线性逼近代替一阶分片常数逼近,减少了Lax-Friedrichs格式的过多数值粘性.通过对混合导数离散形式的适当处理... 直接把Nessyahu和Tadmor[1,2]的思想推广到三维非线性双曲型守恒律情形,以交错形式Lax-Friedrichs格式为基本模块,使用二阶分片线性逼近代替一阶分片常数逼近,减少了Lax-Friedrichs格式的过多数值粘性.通过对混合导数离散形式的适当处理,构造了一类不须解Riemann问题、具有时空二阶精度高分辨率的MmB差分格式。这些差分格式很容易推广到向量系统中去。最后,一些数值模拟计算结果也证明了这些差分格式的有效性。 展开更多
关键词 双曲型方程 分辨率 MMB差分格式 三维时空 二阶精度 初始值
下载PDF
摄动有限差分方法研究进展 被引量:18
16
作者 高智 《力学进展》 EI CSCD 北大核心 2000年第2期200-215,共16页
振动有限差分(PFD)方法,既离散徽商项也离散非微商项(包括微商系数),在微商用直接差分近似的前提下提高差分格式的精度和分辨率.PFD方法包括局部线化微分方程的摄动精确数值解(PENS)方法和摄动数值解(PNS)方法... 振动有限差分(PFD)方法,既离散徽商项也离散非微商项(包括微商系数),在微商用直接差分近似的前提下提高差分格式的精度和分辨率.PFD方法包括局部线化微分方程的摄动精确数值解(PENS)方法和摄动数值解(PNS)方法以及考虑非线性近似的摄动高精度差分(PHD)方法。论述了这些方法的基本思想、具体技巧、若干方程(对流扩散方程、对流扩散反应方程、双曲方程、抛物方程和KdV方程)的PENS、PNS和PHD格式,它们的性质及数值实验.并与有关的数值方法作了必要的比较.最后提出值得进一步研究的一些课题. 展开更多
关键词 有限差分方法 摄动精确数值解 摄动有限差分方法
下载PDF
改进型Boussinesq方程高精度紧致差分显格式 被引量:1
17
作者 周俊陶 林建国 谢志华 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第4期215-218,共4页
采用一种高精度的紧致差分显格式对改进型Boussinesq方程进行数值求解;采用具有TVD性质的三阶Runge-Kutta方法进行预报,用三次样条函数进行校正,时间精度可达到四阶;在空间离散上采用六阶精度的三点紧致显格式进行计算;运用以上数值格式... 采用一种高精度的紧致差分显格式对改进型Boussinesq方程进行数值求解;采用具有TVD性质的三阶Runge-Kutta方法进行预报,用三次样条函数进行校正,时间精度可达到四阶;在空间离散上采用六阶精度的三点紧致显格式进行计算;运用以上数值格式对Beji和Nadaoka改进型Boussinesq方程进行了求解,求解证明:高精度的数值结果和已知的试验结果吻合良好.作为验证算例,同时对波浪在台阶上的传播进行了模拟,从效果对比上可以看出,所得结果明显比Kittitanasuan的计算结果更靠近试验值. 展开更多
关键词 高精度数值模拟 紧致显格式 改进型Boussinesq方程
下载PDF
双曲型守恒律方程的一个大时间步长二阶TVD差分格式 被引量:1
18
作者 戴嘉尊 王晓华 《南京航空学院学报》 CSCD 1989年第3期104-113,共10页
本文根据Harten,A.的大时间步长差分分格式构造思想,为双曲型守恒律方程弱解计算构造了一个2K+3点大时间步长二阶显式差分格式——LTS-LF格式,得到了其在CFL限制K下为总变差不增差分格式(TVD格式)。文章按照Roe的方法推广格式到方程组情... 本文根据Harten,A.的大时间步长差分分格式构造思想,为双曲型守恒律方程弱解计算构造了一个2K+3点大时间步长二阶显式差分格式——LTS-LF格式,得到了其在CFL限制K下为总变差不增差分格式(TVD格式)。文章按照Roe的方法推广格式到方程组情形,并就Burger’s方程和Euler方程组黎曼问题进行数值试验,结果令人满意。 展开更多
关键词 守恒律方程 差分格式 二阶精度
下载PDF
一类三维基于通量分裂的高精度MmB差分格式
19
作者 吴开腾 张莉 《兵工学报》 EI CAS CSCD 北大核心 2010年第S1期121-125,共5页
采用谱体积(SV)方法划分计算域,研究了双曲型守恒律的高精度差分格式;引入牛顿数值差商,重构小区间交界面上的正、负数值通量,并给出了校正公式;对时间离散采取高阶Runge-Kutta TVD方法,构造了三维非线性双曲型守恒律方程的一个高精度... 采用谱体积(SV)方法划分计算域,研究了双曲型守恒律的高精度差分格式;引入牛顿数值差商,重构小区间交界面上的正、负数值通量,并给出了校正公式;对时间离散采取高阶Runge-Kutta TVD方法,构造了三维非线性双曲型守恒律方程的一个高精度、高分辨率的守恒型差分格式,证明了格式的MmB特性。数值模拟计算结果表明了MmB差分格式的有效性。 展开更多
关键词 MMB差分格式 高阶精度 通量分裂
下载PDF
Calibration of a γ-Re_θ transition model and its validation in low-speed flows with high-order numerical method 被引量:9
20
作者 Wang Yuntao Zhang Yulun +1 位作者 Li Song Meng Dehong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期704-711,共8页
Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonline... Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonlinear scheme (WCNS), and the purpose of the present work is to improve the numerical accuracy for aerodynamic characteristics simulation of low-speed flow with transition model on the basis of high-order numerical method study. Firstly, the empirical correlation functions involved in the Y-Reo transition model are modified and calibrated with experimental data of turbulent flat plates. Then, the grid convergence is studied on NLR-7301 two-element airfoil with the modified empirical correlation. At last, the modified empirical correlation is validated with NLR-7301 two-element airfoil and high-lift trapezoidal wing from transition location, velocity pro- file in boundary layer, surface pressure coefficient and aerodynamic characteristics. The numerical results illustrate that the numerical accuracy of transition length and skin friction behind transition location are improved with modified empirical correlation function, and obviously increases the numerical accuracy of aerodynamic characteristics prediction for typical transport configurations in low-speed range. 展开更多
关键词 Aerodynamic characteristicsFinite difference scheme high-order method Laminar to turbulenttransition RANS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部