This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
In both quantum and classical field systems,conservation laws such as the conservation of energy and momentum are widely regarded as fundamental properties.A broadly accepted approach to deriving conservation laws is ...In both quantum and classical field systems,conservation laws such as the conservation of energy and momentum are widely regarded as fundamental properties.A broadly accepted approach to deriving conservation laws is built using Noether's method.However,this procedure is still unclear for relativistic particle-field systems where particles are regarded as classical world lines.In the present study,we establish a general manifestly covariant or geometric field theory for classical relativistic particle-field systems.In contrast to quantum systems,where particles are viewed as quantum fields,classical relativistic particle-field systems present specific challenges.These challenges arise from two sides.The first comes from the mass-shell constraint.To deal with the mass-shell constraint,the Euler–Lagrange–Barut(ELB)equation is used to determine the particle's world lines in the four-dimensional(4D)Minkowski space.Besides,the infinitesimal criterion,which is a differential equation in formal field theory,is reconstructed by an integro-differential form.The other difficulty is that fields and particles depend on heterogeneous manifolds.To overcome this challenge,we propose using a weak version of the ELB equation that allows us to connect local conservation laws and continuous symmetries in classical relativistic particle-field systems.By applying a weak ELB equation to classical relativistic particle-field systems,we can systematically derive local conservation laws by examining the underlying symmetries of the system.Our proposed approach provides a new perspective on understanding conservation laws in classical relativistic particle-field systems.展开更多
Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and comp...Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.展开更多
The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties...The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties of the SLWR with large deformation characteristics under internal wave excitation.A numerical scheme of the SLWR is constructed using the slender-rod theory,and the internal solitary wave(ISW)with a two-layer seawater model is simulated by the extended Korteweg-deVries equation.The finite element method combined with the Newmark-βmethod is applied to discretize the equations and update the time integration.The ISW excitation combined with vessel motion on the dynamic deformation and stress of the SLWR is investigated,and extensive simulations of the ISW parameters,including the interface depth ratio and density difference,are carried out.Case calculation reveals that the displacement of the riser in the lower interface layer increases significantly under the ISW excitation,and the stresses at a part of both ends grow evidently.Moreover,the mean value of riser responses under a combination of vessel motion and ISW coincides with the ISW-induced ones.Furthermore,the dynamic responses along the whole riser,including the displacement amplitudes,bending moment amplitudes,and stress amplitudes,almost increase with the increase in interface depth ratios and density differences.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
High-order harmonic generation of the cyclo[18]carbon(C_(18) ) molecule under few-cycle circularly polarized laser pulse is studied by time-dependent density functional theory. Compared with the harmonic emission of t...High-order harmonic generation of the cyclo[18]carbon(C_(18) ) molecule under few-cycle circularly polarized laser pulse is studied by time-dependent density functional theory. Compared with the harmonic emission of the ring molecule C_(6)H_(6) having similar ionization potential, the C_(18) molecule has higher efficiency and cutoff energy than C_(6)H_(6) with the same laser field parameters. Further researches indicate that the harmonic efficiency and cutoff energy of the C_(18) molecule increase gradually with the increase of the laser intensity of the driving laser or decrease of the wavelength, both are larger than those of the C_(6)H_(6) molecule. Through the analysis of the time-dependent evolution of the electronic wave packets, it is also found that the higher efficiency of harmonic generation can be attributed to the larger spatial scale of the C_(18) molecule,which leads to a greater chance for the ionized electrons from one atom to recombine with others of the parent molecule.Selecting the suitable driving laser pulse, it is demonstrated that high-order harmonic generation in the C_(18) molecule has a wide range of applications in producing circularly polarized isolated attosecond pulse.展开更多
Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deform...Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d.展开更多
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the...In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the design drawings.However,with the occurrence of the movements of the reinforced concrete cover plates at short notice or building deformations in the long term,the control points upon the engineering structure will be displaced,and the fitness between the subnetwork and the global control network may be irresponsible.Therefore,it is necessary to evaluate the deformations of the 3D alignment control network.Different from the extant investigations,in this paper,to characterize the deformations of the control network,all of the congruent models between the points measured in different epochs have been identified,and the congruence model with the most control points is considered as the primary or fundamental model,the remaining models are recognized as the additional ones.Furthermore,the discrepancies between the primary S-transformation parameters and the additional S-transformation parameters can reflect the relative movements of the additional congruence models.Both the iterative GCT method and the iterative combinatorial theory are proposed to detect multiple congruence models in the control network.Considering the actual work of the alignment,it is essential to identify the competitive models in the monitoring network,which can provide us a hint that,even the fitness between the subnetwork and the global control network is good,there are still deformations which may be ignored.The numerical experiments show that the suggested approaches can describe the deformation of the 3D alignment control network roundly.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling p...Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts.展开更多
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the...A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).展开更多
In this paper, the deformation theory in plasticity is formulated in the variational inequality, which can relax the constraint conditions of the constitutive equations. The new form makes the calculation more conveni...In this paper, the deformation theory in plasticity is formulated in the variational inequality, which can relax the constraint conditions of the constitutive equations. The new form makes the calculation more convenient than general energy forms and have reliable mathematical basis. Thus the plasticity theory may be solved by means of the quadratic programming instead of the iterative methods. And the solutions can be made in one step without any diversion of the load.展开更多
arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperf...arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.展开更多
A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler ...A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler gamma and beta functions and their p-adic analogues, from a cohomological point of view. Connections between various methods for computing scattering amplitudes are related to the moduli space problem and period domains.展开更多
Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system...Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.展开更多
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ...The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.
基金supported by National Natural Science Foundation of China(No.12005141)supported by National Natural Science Foundation of China(No.11805273)+2 种基金supported by the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSCCIP019)National MC Energy R&D Program(No.2018YFE0304100)National Natural Science Foundation of China(No.11905220)。
文摘In both quantum and classical field systems,conservation laws such as the conservation of energy and momentum are widely regarded as fundamental properties.A broadly accepted approach to deriving conservation laws is built using Noether's method.However,this procedure is still unclear for relativistic particle-field systems where particles are regarded as classical world lines.In the present study,we establish a general manifestly covariant or geometric field theory for classical relativistic particle-field systems.In contrast to quantum systems,where particles are viewed as quantum fields,classical relativistic particle-field systems present specific challenges.These challenges arise from two sides.The first comes from the mass-shell constraint.To deal with the mass-shell constraint,the Euler–Lagrange–Barut(ELB)equation is used to determine the particle's world lines in the four-dimensional(4D)Minkowski space.Besides,the infinitesimal criterion,which is a differential equation in formal field theory,is reconstructed by an integro-differential form.The other difficulty is that fields and particles depend on heterogeneous manifolds.To overcome this challenge,we propose using a weak version of the ELB equation that allows us to connect local conservation laws and continuous symmetries in classical relativistic particle-field systems.By applying a weak ELB equation to classical relativistic particle-field systems,we can systematically derive local conservation laws by examining the underlying symmetries of the system.Our proposed approach provides a new perspective on understanding conservation laws in classical relativistic particle-field systems.
基金Supported by National Natural Science Foundation of China(Grant No.51875033)Fundamental Research Funds for the Central Universities of China(Grant No.2021YJS137).
文摘Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.
基金This work was supported by the National Natural Science Foundation of China(Nos.U2006226,51979257)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2020ME261,ZR2019MEE032).
文摘The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties of the SLWR with large deformation characteristics under internal wave excitation.A numerical scheme of the SLWR is constructed using the slender-rod theory,and the internal solitary wave(ISW)with a two-layer seawater model is simulated by the extended Korteweg-deVries equation.The finite element method combined with the Newmark-βmethod is applied to discretize the equations and update the time integration.The ISW excitation combined with vessel motion on the dynamic deformation and stress of the SLWR is investigated,and extensive simulations of the ISW parameters,including the interface depth ratio and density difference,are carried out.Case calculation reveals that the displacement of the riser in the lower interface layer increases significantly under the ISW excitation,and the stresses at a part of both ends grow evidently.Moreover,the mean value of riser responses under a combination of vessel motion and ISW coincides with the ISW-induced ones.Furthermore,the dynamic responses along the whole riser,including the displacement amplitudes,bending moment amplitudes,and stress amplitudes,almost increase with the increase in interface depth ratios and density differences.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12204214,12074145,and 11627807)。
文摘High-order harmonic generation of the cyclo[18]carbon(C_(18) ) molecule under few-cycle circularly polarized laser pulse is studied by time-dependent density functional theory. Compared with the harmonic emission of the ring molecule C_(6)H_(6) having similar ionization potential, the C_(18) molecule has higher efficiency and cutoff energy than C_(6)H_(6) with the same laser field parameters. Further researches indicate that the harmonic efficiency and cutoff energy of the C_(18) molecule increase gradually with the increase of the laser intensity of the driving laser or decrease of the wavelength, both are larger than those of the C_(6)H_(6) molecule. Through the analysis of the time-dependent evolution of the electronic wave packets, it is also found that the higher efficiency of harmonic generation can be attributed to the larger spatial scale of the C_(18) molecule,which leads to a greater chance for the ionized electrons from one atom to recombine with others of the parent molecule.Selecting the suitable driving laser pulse, it is demonstrated that high-order harmonic generation in the C_(18) molecule has a wide range of applications in producing circularly polarized isolated attosecond pulse.
基金Funded by Plan Projects of Hunan Provincial Science&Technology Department(2014FJ3046)Scientific Research Fund of Hunan Provincial Education Department(No.14A045)+1 种基金National Natural Science Foundation of China(Grant Nos.51434006,51374105 and 51374106)China Postdoctoral Science Foundation 2014M562135)
文摘Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d.
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
文摘In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the design drawings.However,with the occurrence of the movements of the reinforced concrete cover plates at short notice or building deformations in the long term,the control points upon the engineering structure will be displaced,and the fitness between the subnetwork and the global control network may be irresponsible.Therefore,it is necessary to evaluate the deformations of the 3D alignment control network.Different from the extant investigations,in this paper,to characterize the deformations of the control network,all of the congruent models between the points measured in different epochs have been identified,and the congruence model with the most control points is considered as the primary or fundamental model,the remaining models are recognized as the additional ones.Furthermore,the discrepancies between the primary S-transformation parameters and the additional S-transformation parameters can reflect the relative movements of the additional congruence models.Both the iterative GCT method and the iterative combinatorial theory are proposed to detect multiple congruence models in the control network.Considering the actual work of the alignment,it is essential to identify the competitive models in the monitoring network,which can provide us a hint that,even the fitness between the subnetwork and the global control network is good,there are still deformations which may be ignored.The numerical experiments show that the suggested approaches can describe the deformation of the 3D alignment control network roundly.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
文摘Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts.
基金the National Natural Science Foundation of China(Nos.11602204 and 12102373)the Fundamental Research Funds for the Central Universities of China(Nos.2682022ZTPY081 and 2682022CX056)the Natural Science Foundation of Sichuan Province of China(Nos.2023NSFSC0849,2023NSFSC1300,2022NSFSC1938,and 2022NSFSC2003)。
文摘A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).
文摘In this paper, the deformation theory in plasticity is formulated in the variational inequality, which can relax the constraint conditions of the constitutive equations. The new form makes the calculation more convenient than general energy forms and have reliable mathematical basis. Thus the plasticity theory may be solved by means of the quadratic programming instead of the iterative methods. And the solutions can be made in one step without any diversion of the load.
文摘arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.
文摘A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler gamma and beta functions and their p-adic analogues, from a cohomological point of view. Connections between various methods for computing scattering amplitudes are related to the moduli space problem and period domains.
基金supported by the Chinese Scholarship Council(CSC)(No.201806340074)Shenzhen Clean Energy Research Institute and National Natural Science Foundation of China(No.12005141)+3 种基金supported by the US Department of Energy(No.DE-AC02-09CH11466)supported by the National MC Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)the National Natural Science Foundation of China(Nos.11905220 and 11805273)。
文摘Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.
基金the University of Kashan.(Grant Number:467893/0655)。
文摘The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.