The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co...We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.展开更多
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe...Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.展开更多
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical...In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.展开更多
Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ...Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna...This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
In this paper, we consider numerical solutions of fractional ordinary diferential equations with the Caputo-Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The propo...In this paper, we consider numerical solutions of fractional ordinary diferential equations with the Caputo-Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The proposed method makes use of quadratic interpolation function in sub-intervals, which allows to produce fourth-order convergence. A rigorous stability and convergence analysis of the proposed scheme is given. A series of numerical examples are presented to validate the theoretical claims. Traditionally a scheme having fourth-order convergence could only be obtained by using block-by-block technique. The advantage of our scheme is that the solution can be obtained step by step, which is cheaper than a block-by-block-based approach.展开更多
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li...Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.展开更多
By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn...By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results.展开更多
In this paper, we apply the differential transformation method to high-order nonlinear Volterra- Fredholm integro-differential equations with se- parable kernels. Some different examples are considered the results of ...In this paper, we apply the differential transformation method to high-order nonlinear Volterra- Fredholm integro-differential equations with se- parable kernels. Some different examples are considered the results of these examples indi-cated that the procedure of the differential transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.
基金supported by the NSFC(12261044)the STP of Education Department of Jiangxi Province of China(GJJ210302)。
文摘We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1805005)in part by the National Natural Science Foundation of China(Grant No.62031019)in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256。
文摘Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
基金supported by NSF of Shaanxi Province(Grant No.2023-JC-YB-011).
文摘In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.
基金supported by Basic Science Research Program through the National Natural Science Foundation of China(Grant No.61867003)Key Project of Science and Technology Research and Development Plan of China Railway Co.,Ltd.(N2022X009).
文摘Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金This research was supported by the National Natural Science Foundation of China(Grant numbers 11501140,51661135011,11421110001,and 91630204)the Foundation of Guizhou Science and Technology Department(No.[2017]1086)The first author would like to acknowledge the financial support by the China Scholarship Council(201708525037).
文摘In this paper, we consider numerical solutions of fractional ordinary diferential equations with the Caputo-Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The proposed method makes use of quadratic interpolation function in sub-intervals, which allows to produce fourth-order convergence. A rigorous stability and convergence analysis of the proposed scheme is given. A series of numerical examples are presented to validate the theoretical claims. Traditionally a scheme having fourth-order convergence could only be obtained by using block-by-block technique. The advantage of our scheme is that the solution can be obtained step by step, which is cheaper than a block-by-block-based approach.
基金supported by the National Natural Science Foundation of China(12171050,12071047)the Fundamental Research Funds for the Central Universities(500421126)。
文摘Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.
基金supported partly by the National Natural Science Foundation of China(12171050,11871260)National Science Foundation of Guangdong Province(2018A030313508)。
文摘By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results.
文摘In this paper, we apply the differential transformation method to high-order nonlinear Volterra- Fredholm integro-differential equations with se- parable kernels. Some different examples are considered the results of these examples indi-cated that the procedure of the differential transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.