Differential Power Analysis (DPA) is an effective attack method to break the crypto chips and it has been considered to be a threat to security of information system. With analyzing the prin-ciple of resisting DPA,an ...Differential Power Analysis (DPA) is an effective attack method to break the crypto chips and it has been considered to be a threat to security of information system. With analyzing the prin-ciple of resisting DPA,an available countermeasure based on randomization is proposed in this paper. Time delay is inserted in the operation process and random number is precharged to the circuit during the delay time,the normal schedule is disturbed and the power is randomized. Following this meth-odology,a general DPA resistance random precharge architecture is proposed and DES algorithm following this architecture is implemented. This countermeasure is testified to be efficient to resist DPA.展开更多
The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is r...The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is robust, requires few control variables, is easy to use andlends itself very well to parallel computation. Calculation results indicate that the DE algorithmsimulates faults of a missile power system very well.展开更多
Based on the“three box”exergy analysis model,a black box-gray box hierarchical exergy analysis and evaluation method is put forward in this paper,which is applied to evaluate the power generation technology of diffe...Based on the“three box”exergy analysis model,a black box-gray box hierarchical exergy analysis and evaluation method is put forward in this paper,which is applied to evaluate the power generation technology of differential pressure produced by natural gas expansion.By using the exergy analysis theory,the black box-gray box hierarchical exergy analysis models of three differential pressure power generation technologies are established respectively.Firstly,the“black box”analysis models of main energy consuming equipment are established,and then the“gray box”analysis model of the total system is established.Based on the calculation results of exergy analysis indexes,the weak energy consumption equipment in the whole power generation process is accurately located.Taking a gas field in southwest China as an example,the comprehensive energy consumption evaluation of the three power generation technologies is carried out,and the technology with the best energy consumption condition among the three technologies is determined.Finally,the rationalization improvement measures are put forward from improving the air tightness,replacing the deflector and reducing the flow loss.展开更多
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadra...We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadratic interpolation on each subinterval.The method is shown to be unconditionally stable,and for general nonlinear equations,the uniform sharp numerical order 3−νcan be rigorously proven for sufficiently smooth solutions at all time steps.The proof provides a gen-eral guide for proving the sharp order for higher-order schemes in the nonlinear case.Some numerical examples are given to validate our theoretical results.展开更多
This paper presents a method for designing a class of countermeasures for DPA attacks based on attenuation of current variations. In this class of countermeasures, designers aim at decreasing the dynamic current varia...This paper presents a method for designing a class of countermeasures for DPA attacks based on attenuation of current variations. In this class of countermeasures, designers aim at decreasing the dynamic current variations to reduce the information that can be extracted from the current consumption of secure microsystems. The proposed method is based on a novel formula that calculates the number of current traces required for a successful DPA attack using the characteristics of the microsystem current signal and the external noise of the measurement setup. The different stages of the proposed method are illustrated through designing an example current flattening circuit. Meanwhile validity and applicability of the proposed formula is verified by comparing theoretical results with those obtained experimentally for the example circuit. The proposed formula not only estimates the required level of attenuation for a target level of robustness defined by design requirements, it also predicts the effectiveness of a countermeasure using simulation results therefore dramatically reducing the time to design of secure microsystems.展开更多
A fault sensitivity analysis(FSA)-resistance model based on time randomization is proposed.The randomization unit is composed of two parts,namely the configurable register array(R-A)and the decoder(chiefly random...A fault sensitivity analysis(FSA)-resistance model based on time randomization is proposed.The randomization unit is composed of two parts,namely the configurable register array(R-A)and the decoder(chiefly random number generator,RNG).In this way,registers chosen can be either valid or invalid depending on the configuration information generated by the decoder.Thus,the fault sensitivity information can be confusing.Meanwhile,based on this model,a defensive scheme is designed to resist both fault sensitivity analysis(FSA)and differential power analysis(DPA).This scheme is verified with our experiments.展开更多
文摘Differential Power Analysis (DPA) is an effective attack method to break the crypto chips and it has been considered to be a threat to security of information system. With analyzing the prin-ciple of resisting DPA,an available countermeasure based on randomization is proposed in this paper. Time delay is inserted in the operation process and random number is precharged to the circuit during the delay time,the normal schedule is disturbed and the power is randomized. Following this meth-odology,a general DPA resistance random precharge architecture is proposed and DES algorithm following this architecture is implemented. This countermeasure is testified to be efficient to resist DPA.
文摘The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is robust, requires few control variables, is easy to use andlends itself very well to parallel computation. Calculation results indicate that the DE algorithmsimulates faults of a missile power system very well.
基金financially supported by the National Natural Science Foundation of China(52074089 and 51534004)Natural Science Foundation of Heilongjiang Province of China(LH2019E019)。
文摘Based on the“three box”exergy analysis model,a black box-gray box hierarchical exergy analysis and evaluation method is put forward in this paper,which is applied to evaluate the power generation technology of differential pressure produced by natural gas expansion.By using the exergy analysis theory,the black box-gray box hierarchical exergy analysis models of three differential pressure power generation technologies are established respectively.Firstly,the“black box”analysis models of main energy consuming equipment are established,and then the“gray box”analysis model of the total system is established.Based on the calculation results of exergy analysis indexes,the weak energy consumption equipment in the whole power generation process is accurately located.Taking a gas field in southwest China as an example,the comprehensive energy consumption evaluation of the three power generation technologies is carried out,and the technology with the best energy consumption condition among the three technologies is determined.Finally,the rationalization improvement measures are put forward from improving the air tightness,replacing the deflector and reducing the flow loss.
基金This research was supported by National Natural Science Foundation of China(Nos.11901135,11961009)Foundation of Guizhou Science and Technology Department(Nos.[2020]1Y015,[2017]1086)+1 种基金The first author would like to acknowledge the financial support by the China Scholarship Council(201708525037)The second author was supported by the Academic Research Fund of the Ministry of Education of Singapore under grant No.R-146-000-305-114.
文摘We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadratic interpolation on each subinterval.The method is shown to be unconditionally stable,and for general nonlinear equations,the uniform sharp numerical order 3−νcan be rigorously proven for sufficiently smooth solutions at all time steps.The proof provides a gen-eral guide for proving the sharp order for higher-order schemes in the nonlinear case.Some numerical examples are given to validate our theoretical results.
文摘This paper presents a method for designing a class of countermeasures for DPA attacks based on attenuation of current variations. In this class of countermeasures, designers aim at decreasing the dynamic current variations to reduce the information that can be extracted from the current consumption of secure microsystems. The proposed method is based on a novel formula that calculates the number of current traces required for a successful DPA attack using the characteristics of the microsystem current signal and the external noise of the measurement setup. The different stages of the proposed method are illustrated through designing an example current flattening circuit. Meanwhile validity and applicability of the proposed formula is verified by comparing theoretical results with those obtained experimentally for the example circuit. The proposed formula not only estimates the required level of attenuation for a target level of robustness defined by design requirements, it also predicts the effectiveness of a countermeasure using simulation results therefore dramatically reducing the time to design of secure microsystems.
文摘A fault sensitivity analysis(FSA)-resistance model based on time randomization is proposed.The randomization unit is composed of two parts,namely the configurable register array(R-A)and the decoder(chiefly random number generator,RNG).In this way,registers chosen can be either valid or invalid depending on the configuration information generated by the decoder.Thus,the fault sensitivity information can be confusing.Meanwhile,based on this model,a defensive scheme is designed to resist both fault sensitivity analysis(FSA)and differential power analysis(DPA).This scheme is verified with our experiments.