This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenv...Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenvalue problems,solvability,sufficient conditions.展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the lin...The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the linear theory of porous piezoelectric materials are proved for the quasi-static electric field approximation. The uniqueness theorem is also proved without using the positive definiteness of the elastic field. An eigenvalue problem associated with free vibrations of a porous piezoelectric body is stud- ied using the abstract formulation. Some properties of operators are also proved. The problem of frequency shift due to small disturbances, based on an abstract formulation, is studied using a variational and operator approach. A perturbation analysis of a special ease is also given.展开更多
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an ...In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.展开更多
The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation...The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.展开更多
There are well-known inequalities among eigenvalues of right-definite Sturm- Liouville problems. In this paper, we study left-definite regular self-adjoint Sturm-Liouville problems with separated and coupled boundary ...There are well-known inequalities among eigenvalues of right-definite Sturm- Liouville problems. In this paper, we study left-definite regular self-adjoint Sturm-Liouville problems with separated and coupled boundary conditions. For any fixed equation, we establish a sequence of inequalities among the eigenvalues for different boundary conditions, which is both theoretical and computational importance.展开更多
In(relativistic)electronic structure methods,the quaternion matrix eigenvalue problem and the linear response(Bethe-Salpeter)eigenvalue problem for excitation energies are two frequently encoun-tered structured eigenv...In(relativistic)electronic structure methods,the quaternion matrix eigenvalue problem and the linear response(Bethe-Salpeter)eigenvalue problem for excitation energies are two frequently encoun-tered structured eigenvalue problems.While the former problem was thoroughly studied,the later problem in its most general form,namely,the complex case without assuming the positive definiteness of the electronic Hessian,was not fully understood.In view of their very similar mathematical structures,we examined these two problems from a unified point of view.We showed that the identification of Lie group structures for their eigenvectors provides a framework to design diagonalization algorithms as well as numerical optimizations techniques on the corresponding manifolds.By using the same reduction algorithm for the quaternion matrix eigenvalue problem,we provided a necessary and sufficient condition to characterize the different scenarios,where the eigenvalues of the original linear response eigenvalue problem are real,purely imaginary,or complex.The result can be viewed as a natural generalization of the well-known condition for the real matrix case.展开更多
We present in this paper a new method for solving polynomial eigenvalue problem. We give methods that decompose a skew-Hamiltonian matrix using Cholesky like-decomposition. We transform first the polynomial eigenvalue...We present in this paper a new method for solving polynomial eigenvalue problem. We give methods that decompose a skew-Hamiltonian matrix using Cholesky like-decomposition. We transform first the polynomial eigenvalue problem to an equivalent skew-Hamiltonian/Hamiltonian pencil. This process is known as linearization. Decomposition of the skew-Hamiltonian matrix is the fundamental step to convert a structured polynomial eigenvalue problem into a standard Hamiltonian eigenproblem. Numerical examples are given.展开更多
The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as ...The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.展开更多
The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficie...The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.展开更多
In this article the computation of the Structured Singular Values (SSV) for the delay eigenvalue problems and polynomial eigenvalue problems is presented and investigated. The comparison of bounds of SSV with the well...In this article the computation of the Structured Singular Values (SSV) for the delay eigenvalue problems and polynomial eigenvalue problems is presented and investigated. The comparison of bounds of SSV with the well-known MATLAB routine mussv is investigated.展开更多
Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpai...Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpair of a Hermitian matrix.The convergence theorems of these methods were established under two conditions imposed on the initial guesses for the target eigenvalue and eigenvector.In this paper,we show that these two conditions can be merged into a relaxed one,so the convergence conditions in these theorems can be weakened,and the resulting convergence theorems are applicable to a broad class of matrices.In addition,we give detailed discussions about the new convergence condition and the corresponding estimates of the convergence errors,leading to rigorous convergence theories for both the MRQI and the IMRQI.展开更多
In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed and investigated. The conditions on initial approximation, which ensure the convergence of iterat...In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed and investigated. The conditions on initial approximation, which ensure the convergence of iterative processes, are obtained.展开更多
1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n co...1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix展开更多
We present new sufficient conditions on the solvability and numericalmethods for the following multiplicative inverse eigenvalue problem: Given an n × nreal matrix A and n real numbers λ1 , λ2 , . . . ,λn, fin...We present new sufficient conditions on the solvability and numericalmethods for the following multiplicative inverse eigenvalue problem: Given an n × nreal matrix A and n real numbers λ1 , λ2 , . . . ,λn, find n real numbers c1 , c2 , . . . , cn suchthat the matrix diag(c1, c2,..., cn)A has eigenvalues λ1, λ2,..., λn.展开更多
Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c...Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.展开更多
In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy in...This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...展开更多
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
文摘Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenvalue problems,solvability,sufficient conditions.
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.
基金the University Grant Commission for providing the financial support for this work (No. 8(42)/2010 (MRP/NRCB))
文摘The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the linear theory of porous piezoelectric materials are proved for the quasi-static electric field approximation. The uniqueness theorem is also proved without using the positive definiteness of the elastic field. An eigenvalue problem associated with free vibrations of a porous piezoelectric body is stud- ied using the abstract formulation. Some properties of operators are also proved. The problem of frequency shift due to small disturbances, based on an abstract formulation, is studied using a variational and operator approach. A perturbation analysis of a special ease is also given.
文摘In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.
基金Supported by the National Nature Science Foundation of China(12101356,12101357,12071254,11771253)the National Science Foundation of Shandong Province(ZR2021QA065,ZR2020QA009,ZR2021MA047)the China Postdoctoral Science Foundation(2019M662313)。
文摘The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.
文摘There are well-known inequalities among eigenvalues of right-definite Sturm- Liouville problems. In this paper, we study left-definite regular self-adjoint Sturm-Liouville problems with separated and coupled boundary conditions. For any fixed equation, we establish a sequence of inequalities among the eigenvalues for different boundary conditions, which is both theoretical and computational importance.
基金supported by the National Natural Science Foundation of China (No.21973003)the Beijing Normal University Startup Package
文摘In(relativistic)electronic structure methods,the quaternion matrix eigenvalue problem and the linear response(Bethe-Salpeter)eigenvalue problem for excitation energies are two frequently encoun-tered structured eigenvalue problems.While the former problem was thoroughly studied,the later problem in its most general form,namely,the complex case without assuming the positive definiteness of the electronic Hessian,was not fully understood.In view of their very similar mathematical structures,we examined these two problems from a unified point of view.We showed that the identification of Lie group structures for their eigenvectors provides a framework to design diagonalization algorithms as well as numerical optimizations techniques on the corresponding manifolds.By using the same reduction algorithm for the quaternion matrix eigenvalue problem,we provided a necessary and sufficient condition to characterize the different scenarios,where the eigenvalues of the original linear response eigenvalue problem are real,purely imaginary,or complex.The result can be viewed as a natural generalization of the well-known condition for the real matrix case.
文摘We present in this paper a new method for solving polynomial eigenvalue problem. We give methods that decompose a skew-Hamiltonian matrix using Cholesky like-decomposition. We transform first the polynomial eigenvalue problem to an equivalent skew-Hamiltonian/Hamiltonian pencil. This process is known as linearization. Decomposition of the skew-Hamiltonian matrix is the fundamental step to convert a structured polynomial eigenvalue problem into a standard Hamiltonian eigenproblem. Numerical examples are given.
文摘The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.
基金Science Developing Plan of Beijing Educational Committee, Beijing Natural Science Fund (No. 3022003), and NationalNatural Science Fund of China(No.50375002)
文摘The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.
文摘In this article the computation of the Structured Singular Values (SSV) for the delay eigenvalue problems and polynomial eigenvalue problems is presented and investigated. The comparison of bounds of SSV with the well-known MATLAB routine mussv is investigated.
基金F.Chen:Supported by the National Natural Science Foundation of China(No.11501038)the Science and Technology Planning Projects of Beijing Municipal Education Commission(No.KM201911232010 and No.KM201811232020),China+2 种基金C.-Q.Miao:Supported by the National Natural Science Foundation of China(No.11901361)G.V.Muratova:Supported by the Grant of the Government of the Russian Federation(No.075-15-2019-1928)the China-Russia(NSFC-RFBR)International Cooperative Research Project(No.11911530082 and No.19-51-53013).
文摘Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpair of a Hermitian matrix.The convergence theorems of these methods were established under two conditions imposed on the initial guesses for the target eigenvalue and eigenvector.In this paper,we show that these two conditions can be merged into a relaxed one,so the convergence conditions in these theorems can be weakened,and the resulting convergence theorems are applicable to a broad class of matrices.In addition,we give detailed discussions about the new convergence condition and the corresponding estimates of the convergence errors,leading to rigorous convergence theories for both the MRQI and the IMRQI.
文摘In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed and investigated. The conditions on initial approximation, which ensure the convergence of iterative processes, are obtained.
文摘1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix
文摘We present new sufficient conditions on the solvability and numericalmethods for the following multiplicative inverse eigenvalue problem: Given an n × nreal matrix A and n real numbers λ1 , λ2 , . . . ,λn, find n real numbers c1 , c2 , . . . , cn suchthat the matrix diag(c1, c2,..., cn)A has eigenvalues λ1, λ2,..., λn.
基金This work is supported by the Natural Science Foundation of Fujian Province of China (No. Z0511010)the Natural Science Foundation of China (No. 10571012).
文摘Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.
文摘In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
文摘This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...