The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T...In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.展开更多
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and unif...Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.展开更多
We consider some classes of generalized gap functions for two kinds of generalized variational inequality problems. We obtain error bounds for the underlying variational inequalities using the generalized gap function...We consider some classes of generalized gap functions for two kinds of generalized variational inequality problems. We obtain error bounds for the underlying variational inequalities using the generalized gap functions under the condition that the involved mapping F is g-strongly monotone with respect to the solution, but not necessarily continuous differentiable, even not locally Lipschitz.展开更多
Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive an...Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.展开更多
The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction pr...The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.展开更多
One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
We consider the abstract linear inequality system (A, C, b) and give a sufficient condition for the system (A, C, b) to have an error bound, which extends the previous result.
In this paper we develop periodic quartic spline interpolation theory which,in general,gives better fus to continuous functions than does the existing quintic spline interpolation theory.The main theorem of the paper ...In this paper we develop periodic quartic spline interpolation theory which,in general,gives better fus to continuous functions than does the existing quintic spline interpolation theory.The main theorem of the paper is to establish that r=0,1,2,3.Also,the nanperiodic cases cannot be constructed empoly-ing the methodology of this paper because that will involve several other end conditions entirely different than(1,10).展开更多
Similar to having done for the mid-point and trapezoid quadrature rules,we obtain alternative estimations of error bounds for the Simpson's quadrature rule involving n-time(1 ≤ n ≤ 4) differentiable mappings and ...Similar to having done for the mid-point and trapezoid quadrature rules,we obtain alternative estimations of error bounds for the Simpson's quadrature rule involving n-time(1 ≤ n ≤ 4) differentiable mappings and then to the estimations of error bounds for the adaptive Simpson's quadrature rule.展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
Abstract In this paper, by using the explicit expression of the kernel of the cubic spline interpolation, the optimal error bounds for the cubic spline interpolation of lower soomth functions are obtained.
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
It's well-known that there is a very powerful error bound for Gaussians put forward by Madych and Nelson in 1992. It's of the form|f(x) - s(x)|≤(Cd)c/d||f||h where C, c are constants, h is the Gaussian ...It's well-known that there is a very powerful error bound for Gaussians put forward by Madych and Nelson in 1992. It's of the form|f(x) - s(x)|≤(Cd)c/d||f||h where C, c are constants, h is the Gaussian function, s is the interpolating function, and d is called fill distance which, roughly speaking, measures the spacing of the points at which interpolation occurs. This error bound gets small very fast as d → 0. The constants C and c are very sensitive. A slight change of them will result in a huge change of the error bound. The number c can be calculated as shown in [9]. However, C cannot be calculated, or even approximated. This is a famous question in the theory of radial basis functions. The purpose of this paper is to answer this question.展开更多
This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solution...This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solutions for the above equation by the theory and method of planar dynamical systems, and obtain their existent conditions, number, and general shape. Secondly, we investigate the dissipation effect on the shape evolution of bounded traveling wave solutions. We find out a critical value r^* which can characterize the scale of dissipation effect, and prove that the bounded traveling wave solutions appear as kink profile waves if |r|≥ r^*; while they appear as damped oscillatory waves if |r| 〈 r^*. We also obtain kink profile solitary wave solutions with and without dissipation effect. On the basis of the above discussion, we sensibly design the structure of the approximate damped oscillatory solutions according to the orbits evolution relation corresponding to the component u(ξ) in the global phase portraits, and then obtain the approximate solutions (u(ξ), H(ξ)). Furthermore, by using homogenization principle, we give their error estimates by establishing the integral equation which reflects the relation between exact and approximate solutions. Finally, we discuss the dissipation effect on the amplitude, frequency, and energy decay of the bounded traveling wave solutions.展开更多
This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the...This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay conditions. The truncated series of this formula allow us to approximate any order of partial derivatives for function from Bernstein space using only a finite number of samples from the function itself. This sampling formula will be useful in the approximation theory and its applications, especially after having the truncation error well-established. Examples with tables and figures are given at the end of the paper to illustrate the advantages of this formula.展开更多
Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underes...Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate the very global optima. The purpose of this article is to introduce an efficient and safe procedure to rigorously bound the global optima of semidefinite program. This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can be computed by carefully post processing the output of a semidefinite programming solver. A lower bound is computed on a semidefinite relaxation of the constraint system and the objective function. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), solver to compute the solution of semidefinite programs. This rigorous bound is injected in a branch and bound algorithm to solve the optimisation problem.展开更多
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金This work is supported by the National Natural Science Foundation of China(11661058,11761053)the Natural Science Foundation of Inner Mongolia(2017MS0107)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07).
文摘In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.
基金Project supported by Scientific Research Common Program of Beijing Municipal Commission of Education of China (No.KM200310015060)
文摘Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
基金supported by the National Natural Science Foundation of China (No. 10671050)the Natural Science Foundation of Heilongjiang Province of China (No. A200607)
文摘We consider some classes of generalized gap functions for two kinds of generalized variational inequality problems. We obtain error bounds for the underlying variational inequalities using the generalized gap functions under the condition that the involved mapping F is g-strongly monotone with respect to the solution, but not necessarily continuous differentiable, even not locally Lipschitz.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB215202)the National Natural Science Foundation of China(Grant Nos.61104080 and 61134001)the Fundamental Research Funds for the Central Universities(Grant No.CDJZR13 175501)
文摘Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.
文摘The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.
基金Supported by the National Science Foundation of China(10361008) Supported by the Natural Science Foundation of Yunnan Province(2003A0002M)
文摘We consider the abstract linear inequality system (A, C, b) and give a sufficient condition for the system (A, C, b) to have an error bound, which extends the previous result.
文摘In this paper we develop periodic quartic spline interpolation theory which,in general,gives better fus to continuous functions than does the existing quintic spline interpolation theory.The main theorem of the paper is to establish that r=0,1,2,3.Also,the nanperiodic cases cannot be constructed empoly-ing the methodology of this paper because that will involve several other end conditions entirely different than(1,10).
基金Supported by the Natural Science Foundation of Zhejiang Province(Y6090361)
文摘Similar to having done for the mid-point and trapezoid quadrature rules,we obtain alternative estimations of error bounds for the Simpson's quadrature rule involving n-time(1 ≤ n ≤ 4) differentiable mappings and then to the estimations of error bounds for the adaptive Simpson's quadrature rule.
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘Abstract In this paper, by using the explicit expression of the kernel of the cubic spline interpolation, the optimal error bounds for the cubic spline interpolation of lower soomth functions are obtained.
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
文摘It's well-known that there is a very powerful error bound for Gaussians put forward by Madych and Nelson in 1992. It's of the form|f(x) - s(x)|≤(Cd)c/d||f||h where C, c are constants, h is the Gaussian function, s is the interpolating function, and d is called fill distance which, roughly speaking, measures the spacing of the points at which interpolation occurs. This error bound gets small very fast as d → 0. The constants C and c are very sensitive. A slight change of them will result in a huge change of the error bound. The number c can be calculated as shown in [9]. However, C cannot be calculated, or even approximated. This is a famous question in the theory of radial basis functions. The purpose of this paper is to answer this question.
基金supported by National Natural ScienceFoundation of China(11071164)Innovation Program of Shanghai Municipal Education Commission(13ZZ118)Shanghai Leading Academic Discipline Project(XTKX2012)
文摘This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solutions for the above equation by the theory and method of planar dynamical systems, and obtain their existent conditions, number, and general shape. Secondly, we investigate the dissipation effect on the shape evolution of bounded traveling wave solutions. We find out a critical value r^* which can characterize the scale of dissipation effect, and prove that the bounded traveling wave solutions appear as kink profile waves if |r|≥ r^*; while they appear as damped oscillatory waves if |r| 〈 r^*. We also obtain kink profile solitary wave solutions with and without dissipation effect. On the basis of the above discussion, we sensibly design the structure of the approximate damped oscillatory solutions according to the orbits evolution relation corresponding to the component u(ξ) in the global phase portraits, and then obtain the approximate solutions (u(ξ), H(ξ)). Furthermore, by using homogenization principle, we give their error estimates by establishing the integral equation which reflects the relation between exact and approximate solutions. Finally, we discuss the dissipation effect on the amplitude, frequency, and energy decay of the bounded traveling wave solutions.
文摘This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay conditions. The truncated series of this formula allow us to approximate any order of partial derivatives for function from Bernstein space using only a finite number of samples from the function itself. This sampling formula will be useful in the approximation theory and its applications, especially after having the truncation error well-established. Examples with tables and figures are given at the end of the paper to illustrate the advantages of this formula.
文摘Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate the very global optima. The purpose of this article is to introduce an efficient and safe procedure to rigorously bound the global optima of semidefinite program. This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can be computed by carefully post processing the output of a semidefinite programming solver. A lower bound is computed on a semidefinite relaxation of the constraint system and the objective function. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), solver to compute the solution of semidefinite programs. This rigorous bound is injected in a branch and bound algorithm to solve the optimisation problem.