In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (re...In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con- sideration a variety of interrelated functions;in practice, this decision-making step is performed manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is dif cult to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing strategies for MDAAA have dif culty covering these complex causalities. In this work, a data and knowl- edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci- sion trees, which are used to amend the initial structure provided by experts. The state transition algo- rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This study then experimentally compares the proposed strategy with some existing research. The results of the comparison show that the speed of FCMs convergence into a stable region based on the STA using the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the proposed method is better than those based on other methods. Accordingly, this paper provides a feasible and effective strategy for MDAAA.展开更多
The status of an operator’s situation awareness is one of the critical factors that influence the quality of the missions.Thus the measurement method of the situation awareness status is an important topic to researc...The status of an operator’s situation awareness is one of the critical factors that influence the quality of the missions.Thus the measurement method of the situation awareness status is an important topic to research.So far,there are lots of methods designed for the measurement of situation awareness status,but there is no model that can measure it accurately in real-time,so this work is conducted to deal with such a gap.Firstly,collect the relevant physiological data of operators while they are performing a specific mission,simultaneously,measure their status of situation awareness by using the situation awareness global assessment technique(SAGAT),which is known for accuracy but cannot be used in real-time.And then,after the preprocessing of the raw data,use the physiological data as features,the SAGAT’s results as a label to train a fuzzy cognitive map(FCM),which is an explainable and powerful intelligent model.Also,a hybrid learning algorithm of particle swarm optimization(PSO)and gradient descent is proposed for the FCM training.The final results show that the learned FCM can assess the status of situation awareness accurately in real-time,and the proposed hybrid learning algorithm has better efficiency and accuracy.展开更多
Fuzzy cognitive maps (FCM) is a well-established artificial intelligence technique, which can be effectively applied in the domains of performance measurement, decision making and other management science. FCM can b...Fuzzy cognitive maps (FCM) is a well-established artificial intelligence technique, which can be effectively applied in the domains of performance measurement, decision making and other management science. FCM can be a useful tool in a group decision-making environment by using scientifically integrated expert knowledge. The theories of FCM and balance scorecard (BSC) both emphasize cause-and-effect relationships among indicators in a complex system, but few reports have been published addressing the combined application of these two techniques. In this paper we propose a FCM simulation model for the sample performance measurement system of Intemet-based supply chain, which is constructed by BSC theory. We gave examples to explain how FCM can be adapted to execute the causal mechanism of BSC, and also how FCM can support group decision-making and forecasting in performance measurement.展开更多
Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of...Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.展开更多
Wind energy is currently a fast-growing interdisciplinary field that encompasses many different branches of engineering and science. Modeling and controlling wind energy systems are difficult and challenging problems....Wind energy is currently a fast-growing interdisciplinary field that encompasses many different branches of engineering and science. Modeling and controlling wind energy systems are difficult and challenging problems. The basic structure of wind turbines and some wind control system methods are briefly reviewed. The need for using advanced theories from fuzzy and intelligent systems in studying wind energy systems is identified and justified. FCMs (fuzzy cognitive maps) are used to model wind energy systems. Simulation studies are performed and obtained results are discussed. A new mathematical approach has been proposed to model dynamical complex systems, the DYFUKN (dynamic fuzzy knowledge networks). Many open problems in the areas of modeling and controlling wind energy systems are outlined.展开更多
Since computer system functions are becoming increasingly complex, the user has to spend much more time on the process of seeking information, instead of utilizing the required infor- mation. Information intelligent p...Since computer system functions are becoming increasingly complex, the user has to spend much more time on the process of seeking information, instead of utilizing the required infor- mation. Information intelligent push technology could replace the traditional method to speed up the information retrieval process. The fuzzy cognitive map has strong knowledge representation ability and reasoning capability. Information intelligent push with the basis on fuzzy cognitive map could ab- stract the computer user' s operations to a fuzzy cognitive map, and infer the user' s operating inten- tions. The reasoning results will be translated into operational events, and drive the computer system to push appropriate information to the user.展开更多
An Intelligent Tutoring System (ITS) is a computer based instruction tool that attempts to provide individualized instructions based on learner’s educational status. Advances in development of these systems have rose...An Intelligent Tutoring System (ITS) is a computer based instruction tool that attempts to provide individualized instructions based on learner’s educational status. Advances in development of these systems have rose and fell since their emergence. Perhaps the main reason for this is the absence of appropriate framework for ITS development. This paper proposes a framework for designing two main parts of ITSs. Besides development framework, the second main reason for lack of significant advances in ITS development is its development cost. In general, this cost for instructional material is quite high and it becomes more in ITS development. The proposed method can significantly reduce the development cost. The cost reduction mainly is because of characteristics of applied mapping techniques. These maps are human readable and easily understandable by people who are not aware of knowledge representation techniques. The proposed framework is implemented for a graduate course at a technical university in Asia. This experiment provides an individualized instruction which is the main designing purpose of the ITSs.展开更多
Collaborating with a squad of Unmanned Aerial Vehicles(UAVs)is challenging for a human operator in a cooperative surveillance task.In this paper,we propose a cognitive model that can dynamically adjust the Levels of A...Collaborating with a squad of Unmanned Aerial Vehicles(UAVs)is challenging for a human operator in a cooperative surveillance task.In this paper,we propose a cognitive model that can dynamically adjust the Levels of Autonomy(LOA)of the human-UAVs team according to the changes in task complexity and human cognitive states.Specifically,we use the Situated Fuzzy Cognitive Map(Si FCM)to model the relations among tasks,situations,human states and LOA.A recurrent structure has been used to learn the strategy of adjusting the LOA,while the collaboration task is separated into a perception routine and a control routine.Experiment results have shown that the workload of the human operator is well balanced with the task efficiency.展开更多
This paper determines the risk for cardiovascular diseases(CVDs).and nutrition level in infants aged 06 montlis using Fuzzy Cognitive Maps(FCMs).The aim of this study is to facilitates the medical experts to early det...This paper determines the risk for cardiovascular diseases(CVDs).and nutrition level in infants aged 06 montlis using Fuzzy Cognitive Maps(FCMs).The aim of this study is to facilitates the medical experts to early detects these diseases with accuracy,so that overall death ratio can be reduced.Firstly,we have introduced the concepts of FCMs and briefly refer to the applications of these methods in medical.After that,two intel ligent decision support systems for cardiovascular and malnutrition are developed using FCMs.The proposed cardiovascular risk assessment system takes six inputs:chest pain,cholesterol,heart rate,blood pressure,blood sugar,and old peak and determines CVDs risk.The second decision support system of malnutrition diagnosis takes twelve inputs:breastfeeding,daily income,maternal education,colostrum intake,energy intake,protein intake,vitamin A intake,iron intake,family size,height,weight,head circumference,and skin fold thickness and diagnoses the nutrition level in infants.We have explained the working of both decision support systems using case studies.展开更多
Threat assessment is one of the most important parts of the tactical decisions,and it has a very important influence on task allocation.An application of fuzzy cognitive map(FCM) for target threat assessment in the ai...Threat assessment is one of the most important parts of the tactical decisions,and it has a very important influence on task allocation.An application of fuzzy cognitive map(FCM) for target threat assessment in the air combat is introduced.Considering the fact that the aircrafts participated in the cooperation may not have the same threat assessment mechanism,two different FCM models are established.Using the method of combination,the model of cooperative threat assessment in air combat of multi-aircrafts is established.Simulation results show preliminarily that the method is reasonable and effective.Using FCM for threat assessment is feasible.展开更多
Fuzzy Cognitive Map (FCM) is an inference network, which uses cyclic digraphs for knowledge representation and reasoning. Along with the extensive applications of FCMs, there are some limitations that emerge due to ...Fuzzy Cognitive Map (FCM) is an inference network, which uses cyclic digraphs for knowledge representation and reasoning. Along with the extensive applications of FCMs, there are some limitations that emerge due to the deficiencies associated with FCM itself. In order to eliminate these deficiencies, we propose an unsupervised dynamic fuzzy cognitive map using behaviors and nonlinear relationships. In this model, we introduce dynamic weights and trend-effects to make the model more reasonable. Data credibility is also considered while establishing a machine learning model. Subsequently, we develop an optimized Estimation of Distribution Algorithm (EDA) for weight learning. Experimental results show the practicability of the dynamic FCM model. In comparison to the other existing algorithms, the proposed algorithm has better performance in terms of convergence and stability.展开更多
The management of water consumption in healthcare centres can have positive impacts on both the environmental performance and profitability of health systems.Computational tools assist in the decision-making process o...The management of water consumption in healthcare centres can have positive impacts on both the environmental performance and profitability of health systems.Computational tools assist in the decision-making process of managing the operation and maintenance of healthcare centres.This research aimed to integrate the empirical knowledge of experts in Healthcare Engineering and the historical data from 66 healthcare centres in a Fuzzy Cognitive Map.The outputs of the predictive model included water consumption,water cost,and CO_(2) emissions in healthcare facilities,along with eleven variables to discover the causes and consequences of water consumption in healthcare centres.A healthcare centre with about 12350 users,located in a city that experiences an average of 1100 heating degree days,whose facilities be moderately energy-efficient contributing over 50%with renewable energies is expected to consume 8.4 dam^(3) of water with 32.1 k€of cost,and contribute realising 30.8 ton CO_(2)eq emissions.The use of Fuzzy Cognitive Maps for prediction can provide a high level of effectiveness in identifying the factors that contribute to water consumption and in designing key performance indicators to manage the environmental performance of healthcare buildings.This tool is extremely effective in enhancing the performance of the management division of health systems.展开更多
As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabete...As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.展开更多
为探究地铁深基坑施工安全风险因素动态作用规律,科学预防施工安全事故,针对目前缺乏因素系统识别、因果关系量化和动态推理分析等共性问题,提出一种基于决策试验和评估实验室(Decision Making Trial and Evaluation Laboratory DEMATEL...为探究地铁深基坑施工安全风险因素动态作用规律,科学预防施工安全事故,针对目前缺乏因素系统识别、因果关系量化和动态推理分析等共性问题,提出一种基于决策试验和评估实验室(Decision Making Trial and Evaluation Laboratory DEMATEL)与模糊认知图(Fuzzy Cognitive Map,FCM)的地铁深基坑施工安全风险分析方法。首先,通过理论分析与文献梳理,采用扎根理论识别风险因素;其次,结合专家调研与量化分析,利用DEMATEL方法分析风险因素的因果关系;再次,将DEMATAL决策矩阵转化为FCM模型的交互作用矩阵,展开风险因素的预测与诊断推理分析;最后,选取案例进行实证,验证模型方法的可用性与有效性。结果显示:因素X_(1)(人员安全风险意识)对其他因素的影响程度最高;因素X_(1)(人员安全风险意识)、X_(8)(安全施工组织设计方案)和X_(7)(施工安全风险管理措施)是排名前3的关键风险因素;完善安全施工组织设计方案是最有效的管控对策。展开更多
文摘In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con- sideration a variety of interrelated functions;in practice, this decision-making step is performed manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is dif cult to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing strategies for MDAAA have dif culty covering these complex causalities. In this work, a data and knowl- edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci- sion trees, which are used to amend the initial structure provided by experts. The state transition algo- rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This study then experimentally compares the proposed strategy with some existing research. The results of the comparison show that the speed of FCMs convergence into a stable region based on the STA using the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the proposed method is better than those based on other methods. Accordingly, this paper provides a feasible and effective strategy for MDAAA.
基金supported by the National Natural Science Foundation of China(61305133)the Aeronautical Science Foundation of China grant number 2020Z023053002.
文摘The status of an operator’s situation awareness is one of the critical factors that influence the quality of the missions.Thus the measurement method of the situation awareness status is an important topic to research.So far,there are lots of methods designed for the measurement of situation awareness status,but there is no model that can measure it accurately in real-time,so this work is conducted to deal with such a gap.Firstly,collect the relevant physiological data of operators while they are performing a specific mission,simultaneously,measure their status of situation awareness by using the situation awareness global assessment technique(SAGAT),which is known for accuracy but cannot be used in real-time.And then,after the preprocessing of the raw data,use the physiological data as features,the SAGAT’s results as a label to train a fuzzy cognitive map(FCM),which is an explainable and powerful intelligent model.Also,a hybrid learning algorithm of particle swarm optimization(PSO)and gradient descent is proposed for the FCM training.The final results show that the learned FCM can assess the status of situation awareness accurately in real-time,and the proposed hybrid learning algorithm has better efficiency and accuracy.
基金Funded by Chongqing Natural Science Foundation (No. CSTC2005BB2189) and Chongqing High Tech Projects Foundation (No. 8277)
文摘Fuzzy cognitive maps (FCM) is a well-established artificial intelligence technique, which can be effectively applied in the domains of performance measurement, decision making and other management science. FCM can be a useful tool in a group decision-making environment by using scientifically integrated expert knowledge. The theories of FCM and balance scorecard (BSC) both emphasize cause-and-effect relationships among indicators in a complex system, but few reports have been published addressing the combined application of these two techniques. In this paper we propose a FCM simulation model for the sample performance measurement system of Intemet-based supply chain, which is constructed by BSC theory. We gave examples to explain how FCM can be adapted to execute the causal mechanism of BSC, and also how FCM can support group decision-making and forecasting in performance measurement.
基金supported by the Researchers Supporting Program(TUMA-Project-2021-27)Almaarefa University,Riyadh,Saudi Arabia.Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.
文摘Wind energy is currently a fast-growing interdisciplinary field that encompasses many different branches of engineering and science. Modeling and controlling wind energy systems are difficult and challenging problems. The basic structure of wind turbines and some wind control system methods are briefly reviewed. The need for using advanced theories from fuzzy and intelligent systems in studying wind energy systems is identified and justified. FCMs (fuzzy cognitive maps) are used to model wind energy systems. Simulation studies are performed and obtained results are discussed. A new mathematical approach has been proposed to model dynamical complex systems, the DYFUKN (dynamic fuzzy knowledge networks). Many open problems in the areas of modeling and controlling wind energy systems are outlined.
基金Supported by the National Natural Science Foundation of China(61304254)
文摘Since computer system functions are becoming increasingly complex, the user has to spend much more time on the process of seeking information, instead of utilizing the required infor- mation. Information intelligent push technology could replace the traditional method to speed up the information retrieval process. The fuzzy cognitive map has strong knowledge representation ability and reasoning capability. Information intelligent push with the basis on fuzzy cognitive map could ab- stract the computer user' s operations to a fuzzy cognitive map, and infer the user' s operating inten- tions. The reasoning results will be translated into operational events, and drive the computer system to push appropriate information to the user.
文摘An Intelligent Tutoring System (ITS) is a computer based instruction tool that attempts to provide individualized instructions based on learner’s educational status. Advances in development of these systems have rose and fell since their emergence. Perhaps the main reason for this is the absence of appropriate framework for ITS development. This paper proposes a framework for designing two main parts of ITSs. Besides development framework, the second main reason for lack of significant advances in ITS development is its development cost. In general, this cost for instructional material is quite high and it becomes more in ITS development. The proposed method can significantly reduce the development cost. The cost reduction mainly is because of characteristics of applied mapping techniques. These maps are human readable and easily understandable by people who are not aware of knowledge representation techniques. The proposed framework is implemented for a graduate course at a technical university in Asia. This experiment provides an individualized instruction which is the main designing purpose of the ITSs.
基金supported by the National Natural Science Foundation of China(No.61876187)。
文摘Collaborating with a squad of Unmanned Aerial Vehicles(UAVs)is challenging for a human operator in a cooperative surveillance task.In this paper,we propose a cognitive model that can dynamically adjust the Levels of Autonomy(LOA)of the human-UAVs team according to the changes in task complexity and human cognitive states.Specifically,we use the Situated Fuzzy Cognitive Map(Si FCM)to model the relations among tasks,situations,human states and LOA.A recurrent structure has been used to learn the strategy of adjusting the LOA,while the collaboration task is separated into a perception routine and a control routine.Experiment results have shown that the workload of the human operator is well balanced with the task efficiency.
文摘This paper determines the risk for cardiovascular diseases(CVDs).and nutrition level in infants aged 06 montlis using Fuzzy Cognitive Maps(FCMs).The aim of this study is to facilitates the medical experts to early detects these diseases with accuracy,so that overall death ratio can be reduced.Firstly,we have introduced the concepts of FCMs and briefly refer to the applications of these methods in medical.After that,two intel ligent decision support systems for cardiovascular and malnutrition are developed using FCMs.The proposed cardiovascular risk assessment system takes six inputs:chest pain,cholesterol,heart rate,blood pressure,blood sugar,and old peak and determines CVDs risk.The second decision support system of malnutrition diagnosis takes twelve inputs:breastfeeding,daily income,maternal education,colostrum intake,energy intake,protein intake,vitamin A intake,iron intake,family size,height,weight,head circumference,and skin fold thickness and diagnoses the nutrition level in infants.We have explained the working of both decision support systems using case studies.
基金the Northwest Polytechnical University (NWPU) Foundation for Fundamental Research(No.JC201117)the "E-Starts" Youth Foundation of School of Electronics and Information of Northwest Polytechnical University
文摘Threat assessment is one of the most important parts of the tactical decisions,and it has a very important influence on task allocation.An application of fuzzy cognitive map(FCM) for target threat assessment in the air combat is introduced.Considering the fact that the aircrafts participated in the cooperation may not have the same threat assessment mechanism,two different FCM models are established.Using the method of combination,the model of cooperative threat assessment in air combat of multi-aircrafts is established.Simulation results show preliminarily that the method is reasonable and effective.Using FCM for threat assessment is feasible.
文摘Fuzzy Cognitive Map (FCM) is an inference network, which uses cyclic digraphs for knowledge representation and reasoning. Along with the extensive applications of FCMs, there are some limitations that emerge due to the deficiencies associated with FCM itself. In order to eliminate these deficiencies, we propose an unsupervised dynamic fuzzy cognitive map using behaviors and nonlinear relationships. In this model, we introduce dynamic weights and trend-effects to make the model more reasonable. Data credibility is also considered while establishing a machine learning model. Subsequently, we develop an optimized Estimation of Distribution Algorithm (EDA) for weight learning. Experimental results show the practicability of the dynamic FCM model. In comparison to the other existing algorithms, the proposed algorithm has better performance in terms of convergence and stability.
基金The authors wish to acknowledge the University of Evora(Portugal)for hosting part of this research during the research stay of author G.Sánchez-Barroso.This research was supported by European Regional Development Fund(No.GR18029 and No.GR21098)through VI Regional Plan for ResearchTechnical Development and Innovation from the Regional Government of Extremadura(2017-2020)Author G.Sánchez-Barroso was supported by a predoctoral fellowship(No.PD18047)from Regional Government of Extremadura and European Social Fund.
文摘The management of water consumption in healthcare centres can have positive impacts on both the environmental performance and profitability of health systems.Computational tools assist in the decision-making process of managing the operation and maintenance of healthcare centres.This research aimed to integrate the empirical knowledge of experts in Healthcare Engineering and the historical data from 66 healthcare centres in a Fuzzy Cognitive Map.The outputs of the predictive model included water consumption,water cost,and CO_(2) emissions in healthcare facilities,along with eleven variables to discover the causes and consequences of water consumption in healthcare centres.A healthcare centre with about 12350 users,located in a city that experiences an average of 1100 heating degree days,whose facilities be moderately energy-efficient contributing over 50%with renewable energies is expected to consume 8.4 dam^(3) of water with 32.1 k€of cost,and contribute realising 30.8 ton CO_(2)eq emissions.The use of Fuzzy Cognitive Maps for prediction can provide a high level of effectiveness in identifying the factors that contribute to water consumption and in designing key performance indicators to manage the environmental performance of healthcare buildings.This tool is extremely effective in enhancing the performance of the management division of health systems.
文摘As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.
文摘为探究地铁深基坑施工安全风险因素动态作用规律,科学预防施工安全事故,针对目前缺乏因素系统识别、因果关系量化和动态推理分析等共性问题,提出一种基于决策试验和评估实验室(Decision Making Trial and Evaluation Laboratory DEMATEL)与模糊认知图(Fuzzy Cognitive Map,FCM)的地铁深基坑施工安全风险分析方法。首先,通过理论分析与文献梳理,采用扎根理论识别风险因素;其次,结合专家调研与量化分析,利用DEMATEL方法分析风险因素的因果关系;再次,将DEMATAL决策矩阵转化为FCM模型的交互作用矩阵,展开风险因素的预测与诊断推理分析;最后,选取案例进行实证,验证模型方法的可用性与有效性。结果显示:因素X_(1)(人员安全风险意识)对其他因素的影响程度最高;因素X_(1)(人员安全风险意识)、X_(8)(安全施工组织设计方案)和X_(7)(施工安全风险管理措施)是排名前3的关键风险因素;完善安全施工组织设计方案是最有效的管控对策。