We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
An integration of single-layer proximitycoupling patch antenna and solar cells with bandwidth enhancement and optical energy harvesting is proposed for sustainable communication.For this purpose,many dual-function com...An integration of single-layer proximitycoupling patch antenna and solar cells with bandwidth enhancement and optical energy harvesting is proposed for sustainable communication.For this purpose,many dual-function components are selected for designing the miniaturized solar cell antenna.On the one hand,by greatly affecting the current flow of the rectangular patch,vias and proximity-coupling are introduced to control the resonance modes frequency and matching,respectively,for wideband application,and the radiation performance property can be achieved by high-order mode.On the other hand,vias and proximity-coupling are beneficial to complete direct-current(DC)loop of solar cell and improve compatibility of DC-RF(radio frequency),whereas a high-order mode is beneficial to increase the area of collected light energy.To prove the working principle,fabricated and manufactured solar cell antenna.The measured and simulated results illustrate that the solar cell antenna gain is raised to as high as 9.27 d Bi in4.37 to 5.06 GHz applied to fifth generation communication(5G).展开更多
This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy muc...This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.展开更多
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ...High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control e...In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T...In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.展开更多
Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable ...Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.展开更多
In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization...In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.展开更多
With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstr...With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.展开更多
Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime.However, existing S-parameter based parameter retrieval approaches developed for linear metamaterials d...Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime.However, existing S-parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived.Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power,high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposed approach can be widely used in the research of active metamaterials.展开更多
In this paper, iterative learning control (ILC) design is studied for an iteration-varying tracking problem in which reference trajectories are generated by high-order internal models (HOLM). An HOlM formulated as...In this paper, iterative learning control (ILC) design is studied for an iteration-varying tracking problem in which reference trajectories are generated by high-order internal models (HOLM). An HOlM formulated as a polynomial operator between consecutive iterations describes the changes of desired trajectories in the iteration domain and makes the iterative learning problem become iteration varying. The classical ILC for tracking iteration-invariant reference trajectories, on the other hand, is a special case of HOlM where the polynomial renders to a unity coefficient or a special first-order internal model. By inserting the HOlM into P-type ILC, the tracking performance along the iteration axis is investigated for a class of continuous-time nonlinear systems. Time-weighted norm method is utilized to guarantee validity of proposed algorithm in a sense of data-driven control.展开更多
The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings ...The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy.展开更多
Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the La...Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
基金supported by the National Natural Science Foundation of China(62101380)Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology。
文摘An integration of single-layer proximitycoupling patch antenna and solar cells with bandwidth enhancement and optical energy harvesting is proposed for sustainable communication.For this purpose,many dual-function components are selected for designing the miniaturized solar cell antenna.On the one hand,by greatly affecting the current flow of the rectangular patch,vias and proximity-coupling are introduced to control the resonance modes frequency and matching,respectively,for wideband application,and the radiation performance property can be achieved by high-order mode.On the other hand,vias and proximity-coupling are beneficial to complete direct-current(DC)loop of solar cell and improve compatibility of DC-RF(radio frequency),whereas a high-order mode is beneficial to increase the area of collected light energy.To prove the working principle,fabricated and manufactured solar cell antenna.The measured and simulated results illustrate that the solar cell antenna gain is raised to as high as 9.27 d Bi in4.37 to 5.06 GHz applied to fifth generation communication(5G).
文摘This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.
文摘High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
基金supported by National Natural Science Founda-tion of China (No. 60774010)Natural Science Foundation of JiangsuProvince, Jiangsu "Six Top Talents" (No. 07-A-020)+1 种基金Program for Fundamental Research of Natural Sciences in Universities of JiangsuProvince (No. 07KJB510114)Natural Science Foundation ofXuzhou Normal University (No. 08XLB20)
文摘In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
基金This work is supported by the National Natural Science Foundation of China(11661058,11761053)the Natural Science Foundation of Inner Mongolia(2017MS0107)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07).
文摘In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.
基金Supported by National Natural Science Foundation of China (60774010), Program for New Century Excellent Talents in University of China (NCET-05-0607), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
基金Project supported by the Key Program of the Natural Science Foundation of Sichuan Provincial Education Department (Grant No. 2006A124)the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant No. 05JY029-084)
文摘Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.
基金Program for New Century Excellent Talents in University of China (NCET-05-0607)National Natural Science Fou-ndation of China (No.60774010)Project for Fundamental Research of Natural Sciences in Universities of Jingsu Province (No.07KJB510114)
文摘In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875008,12075034,11975001,and 11975172)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(Grant No.SKL2018KF04)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A09-3)。
文摘With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61401395 and 61604128)the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Y201533913)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2016QNA4025 and 2016QN81002)
文摘Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime.However, existing S-parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived.Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power,high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposed approach can be widely used in the research of active metamaterials.
基金Supported by Program for New Century Excellent Talents in University of China (NCET-05-0607), National Natural Science Foundation of China (60774010), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
基金supported by the General Program (No.60774022)the State Key Program of National Natural Science Foundation of China(No.60834001)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University (No.RCS2009ZT011)
文摘In this paper, iterative learning control (ILC) design is studied for an iteration-varying tracking problem in which reference trajectories are generated by high-order internal models (HOLM). An HOlM formulated as a polynomial operator between consecutive iterations describes the changes of desired trajectories in the iteration domain and makes the iterative learning problem become iteration varying. The classical ILC for tracking iteration-invariant reference trajectories, on the other hand, is a special case of HOlM where the polynomial renders to a unity coefficient or a special first-order internal model. By inserting the HOlM into P-type ILC, the tracking performance along the iteration axis is investigated for a class of continuous-time nonlinear systems. Time-weighted norm method is utilized to guarantee validity of proposed algorithm in a sense of data-driven control.
基金supported by the National Natural Science Foundation of China(9101601861273092+3 种基金61203012)the Foundation for Key Program of Ministry of Education of China(311012)the Key Program for Basic Research of Tianjin(11JCZDJC25100)the Key Program of Tianjin Natural Science(12JCZDJC30300)
文摘The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy.
文摘Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.