期刊文献+
共找到3,584篇文章
< 1 2 180 >
每页显示 20 50 100
Fault Identification for Shear-Type Structures Using Low-Frequency Vibration Modes
1
作者 Cuihong Li Qiuwei Yang Xi Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2769-2791,共23页
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o... Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice. 展开更多
关键词 Fault diagnosis shear steel structure vibration mode dynamic flexibility frequency sensitivity
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
2
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
Observer-based robust high-order fully actuated attitude autopilot design for spinning glide-guided projectiles
3
作者 Wei Wang Yuchen Wang +2 位作者 Shiwei Chen Yongcang Guo Zhongjiao Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期282-294,共13页
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor... This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations. 展开更多
关键词 Spinning glide-guided projectile Attitude control Sliding mode disturbance observer Fixed-time stable theory high-order fully actuated approach
下载PDF
Laser shaping and optical power limiting of pulsed Laguerre–Gaussian laser beams of high-order radial modes in fullerene C60 被引量:1
4
作者 李杰 管文慧 +3 位作者 袁烁 赵亚男 孙玉萍 刘纪彩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期273-280,共8页
We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is ... We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance. 展开更多
关键词 pulsed Laguerre–Gaussian laser beams high-order radial mode optical power limiting reverse saturable absorption
下载PDF
Experimental Investigation of Multi-Mode Vortex-Induced Vibration of Flexible Risers with Different Mass Ratios
5
作者 WANG Yu LOU Min +3 位作者 REN Xiao-hui LIANG Wei-xing LI Xiang DANG Peng-bo 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期1-15,共15页
Experiments were conducted on risers with different mass ratios to study the effect of mode conversion and spanwise correlation. The slenderness ratio of the riser model was set as 169, and the Reynolds numbers are 16... Experiments were conducted on risers with different mass ratios to study the effect of mode conversion and spanwise correlation. The slenderness ratio of the riser model was set as 169, and the Reynolds numbers are 1600-14400. The dynamic responses of riser models versus reduced velocity were analyzed, and the spanwise displacement, frequency,and trajectory of the mode conversion from the lower to the higher mode were explored. The results revealed that the riser model with a higher mass ratio excites a higher number of modes. The conversion region of multi-mode competition exists and narrows with the increasing mass ratio. Mode conversion is continuous and manifests as the transmission of peaks and troughs in mode shape: the peaks and troughs of mode shape move up in the mode stable development region and move down in the mode conversion region. The single-mode dominating vibration exhibits a standing wave feature, and the traveling wave feature is significant in the mode conversion region. Furthermore, the frequency jump is always transmitted from the trough to the peak of the mode shape, and finally, all the axial positions vibrate at the same frequency. The trajectory in the mode conversion region deviates from the 8-shape and recovers the standard8-shape at the middle and late stages of the mode stable development region. 展开更多
关键词 vortex-induced vibration dynamic response mode conversion mass ratio mode weight
下载PDF
Integrated of Proximity-Coupling High-Order Modes Patch Antenna with Solar Cells for Sustainable Communication
6
作者 Jingyu Lai Yu Luo +2 位作者 Ningning Yan Wenxing An Kaixue Ma 《China Communications》 SCIE CSCD 2023年第6期72-81,共10页
An integration of single-layer proximitycoupling patch antenna and solar cells with bandwidth enhancement and optical energy harvesting is proposed for sustainable communication.For this purpose,many dual-function com... An integration of single-layer proximitycoupling patch antenna and solar cells with bandwidth enhancement and optical energy harvesting is proposed for sustainable communication.For this purpose,many dual-function components are selected for designing the miniaturized solar cell antenna.On the one hand,by greatly affecting the current flow of the rectangular patch,vias and proximity-coupling are introduced to control the resonance modes frequency and matching,respectively,for wideband application,and the radiation performance property can be achieved by high-order mode.On the other hand,vias and proximity-coupling are beneficial to complete direct-current(DC)loop of solar cell and improve compatibility of DC-RF(radio frequency),whereas a high-order mode is beneficial to increase the area of collected light energy.To prove the working principle,fabricated and manufactured solar cell antenna.The measured and simulated results illustrate that the solar cell antenna gain is raised to as high as 9.27 d Bi in4.37 to 5.06 GHz applied to fifth generation communication(5G). 展开更多
关键词 solar cell PATCH integration compressed high-order mode high gain proximity-coupling
下载PDF
Micro-Sized Pinhole Inspection with Segmented Time Reversal and High-Order Modes Cluster Lamb Waves Based on EMATs
7
作者 Jinjie Zhou Yang Hu +3 位作者 Xiang Li Yang Zheng Sanhu Yang Yao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期224-236,共13页
Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspect... Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection. 展开更多
关键词 Pinhole corrosion high-order modes cluster Lamb waves Segmented time reversal inspection Electromagnetic acoustic transducer
下载PDF
Experimental Mode and Vibration Comfort Analysis of High-Rise Glulam Building Floor Structure
8
作者 Yuhang He Rongzhuo Zhang +1 位作者 Yifan Zhang Zheng Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2729-2743,共15页
In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequ... In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents. 展开更多
关键词 Glulam building wooden floor experimental mode vibration comfort fundamental frequency
下载PDF
Novel mode-coupling vibrations of AlN thin film bulk acoustic resonator operating with thickness-extensional mode
9
作者 Zinan ZHAO Nian LI +1 位作者 Yilin QU Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2187-2206,共20页
The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The ... The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes. 展开更多
关键词 AlN film mode flip frequency spectrum quantitative prediction(FSQP) dispersion curve mode-coupling vibration
下载PDF
Online asymmetry estimation for whole angle mode coriolis vibratory gyroscopes by high frequency injection 被引量:1
10
作者 Xiang-rui Meng Chong Li Yu-chen Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期314-325,共12页
The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based... The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values. 展开更多
关键词 Rate-integrating gyroscope(RIG) Whole angle mode gyroscope(WAMG) Coriolis vibrating gyroscope(CVG) Online calibration Online identification Online estimation
下载PDF
Investigation of Microstructure, Natural Frequencies and Vibration Modes of Dragonfly Wing 被引量:12
11
作者 H. Rajabi M. Moghadami A. Darvizeh 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期165-173,共9页
In the present work, a thorough investigation on the microstructural and morphological aspects of dragonfly wings was carried out using scanning electron microscope. Then, based on this study and the previous reports,... In the present work, a thorough investigation on the microstructural and morphological aspects of dragonfly wings was carried out using scanning electron microscope. Then, based on this study and the previous reports, a precise three-dimensional numerical model was developed and natural frequencies and vibration modes of dragonfly forewing were determined by finite element method. The results shown that dragonfly wings are made of a series of adaptive materials, which form a very complex composite structure. This bio-composite fabrication has some unique features and potential benefits. Furthermore, the numerical results show that the first natural frequency of dragonfly wings is about 168 Hz and bending is the predominant deformation mode in this stage. The accuracy of the present analysis is verified by comparison of calculated results with experimental data. This paper may be helpful for micro aerial vehicle design concerning dynamic response. 展开更多
关键词 insect wing natural frequency vibration mode SEM finite element method
下载PDF
Variational Mode Decomposition for Rotating Machinery Condition Monitoring Using Vibration Signals 被引量:3
12
作者 Muhd Firdaus Isham Muhd Salman Leong +1 位作者 Meng Hee Lim Zair Asrar Ahmad 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期38-50,共13页
The failure of rotating machinery applications has major time and cost effects on the industry.Condition monitoring helps to ensure safe operation and also avoids losses.The signal processing method is essential for e... The failure of rotating machinery applications has major time and cost effects on the industry.Condition monitoring helps to ensure safe operation and also avoids losses.The signal processing method is essential for ensuring both the efficiency and accuracy of the monitoring process.Variational mode decomposition(VMD)is a signal processing method which decomposes a non-stationary signal into sets of variational mode functions(VMFs)adaptively and non-recursively.The VMD method offers improved performance for the condition monitoring of rotating machinery applications.However,determining an accurate number of modes for the VMD method is still considered an open research problem.Therefore,a selection method for determining the number of modes for VMD is proposed by taking advantage of the similarities in concept between the original signal and VMF.Simulated signal and online gearbox vibration signals have been used to validate the performance of the proposed method.The statistical parameters of the signals are extracted from the original signals,VMFs and intrinsic mode functions(IMFs)and have been fed into machine learning algorithms to validate the performance of the VMD method.The results show that the features extracted from VMD are both superior and accurate for the monitoring of rotating machinery.Hence the proposed method offers a new approach for the condition monitoring of rotating machinery applications. 展开更多
关键词 VARIATIONAL mode decomposition(VMD) monitoring diagnosis vibration SIGNAL mode NUMBER GEAR
下载PDF
Three-dimensional Modeling for Predicting the Vibration Modes of Twin Ball Screw Driving Table 被引量:5
13
作者 WANG Renche ZHAO Tong +1 位作者 YE Peiqing LIU Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期211-218,共8页
As a redundant drive mechanism, twin ball screw feed system has the advantage of high stiffness and little yaw vibration in the feeding process, while leads to increased difficulty with vibration characteristics analy... As a redundant drive mechanism, twin ball screw feed system has the advantage of high stiffness and little yaw vibration in the feeding process, while leads to increased difficulty with vibration characteristics analysis and structure optimization. Only low-dimensional structure and dynamics parameters are considered in the existing research, the complete and effective model for predicting the table's vibrations is lacked. A three-dimensional(3D) mechanical model of twin ball screw driving table is proposed. In order to predict the vibration modes of the table quantitatively, an analytical formulation following a comprehensive approach is developed, where the drive system is modeled as a lumped mass-spring system, and the Lagrangian method is used to obtain the table's independent and coupled axial, yaw, and pitch vibration modes. The frequency variation of each mode is studied for different heights of the center of gravity, nut positions and table masses by numerical simulations. Modal experiment is carried out on the Z-axis feed table of the horizontal machining center MCH63. The results show that for each mode, the error between the estimated and the measured frequencies is less than 13%. The independent and coupled vibration modes are in accordance with the experimental results, respectively The proposed work can serve a better understanding of the table's dynamics and be beneficial for optimizing the structure parameters of twin ball screw drive system in the design stage. 展开更多
关键词 twin ball screw drive dynamic modeling vibration mode
下载PDF
High-order sliding mode attitude controller design for reentry flight 被引量:7
14
作者 Liang Wang Yongzhi Sheng Xiangdong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期848-858,共11页
A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and ... A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results. 展开更多
关键词 reentry vehicle attitude control high-order sliding mode control integral sliding mode.
下载PDF
ZERO MODE NATURAL FREQUENCY AND NONLINEAR VIBRATION OF COUPLED LATERAL AND TORSION OF A LARGE TURBINE GENERATOR 被引量:2
15
作者 TaNa QiuJiajun CaiGanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期302-306,共5页
Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF andvibrations resulted by it are studied. First, calculating method of the ZMNF excited byelectromagnetic in vibrational system of coupled mecha... Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF andvibrations resulted by it are studied. First, calculating method of the ZMNF excited byelectromagnetic in vibrational system of coupled mechanics and electrics are given from the view ofmagnetic energy. Laws that the ZMNF varies with active power and exciting current are obtained andare verified by experiments. Then, coupled lateral and torsional vibration of rotor shaft system isstudied by considering rest eccentricity, rotating eccentricity and swing eccentricity. UsingLargrange-Maxwell equation when three phases are asymmetric derives differential equation of thecoupled vibration. With energy method of nonlinear vibration, amplitude-frequency characteristics ofresonance are studied when rotating speed of rotor equals to ZMNF. The results show that ZMNF willoccur in turbine generators by the action of electromagnetic. Because ZMNF varies withelectromagnetic parameters, resonance can occur when exciting frequency of the rotor speed is fixedwhereas exciting current change. And also find that a generator is in the state of large amplitudein rated exciting current. 展开更多
关键词 Zero mode natural frequency Coupled vibration of lateral and torsionEccentricity Rotor shaft Hydro turbine generator
下载PDF
Application of ultrasonic vibration to shape-casting based on resonance vibration analysis
16
作者 Zong-hang Han Zhi-ming Wang +2 位作者 Zhi-ping Sun Bing-rong Zhang Wei-feng Rao 《China Foundry》 SCIE CAS CSCD 2023年第4期339-346,共8页
The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic hor... The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic horn is inserted directly into the melt,ultrasonic treatment can be utilized in the semi-continuous casting process to produce aluminum ingots with simple shapes.However,due to the attenuation of ultrasound,it is challenging to apply the direct inserting method in the die casting process to produce complex castings.Thus,in this study,the impact of ultrasonic vibration on the microstructure of a gravity die-cast AlSi9Cu3end cap was investigated by applying ultrasonic vibration on the core(indirect method).It is found that the effect of ultrasonic vibration relies greatly on the resonance mode of the core.Selection of ultrasonic vibration schemes mainly depends on the core structure,and only a strong vibration can significantly refine the microstructure of the casting.For castings with complex structures,an elaborated ultrasonic vibration design is necessary to refine the microstructure of the specified casting.In addition,strong vibration applied on the feeding channel can promote the feeding ability of casting by breaking the dendrites during solidification,and consequently reduce the shrinkage porosity. 展开更多
关键词 resonance mode ultrasonic vibration feeding channel aluminum alloy casting
下载PDF
Natural vibration of cantilever porous twisted plate with variable thickness in different directions
17
作者 Y.X.Hao Y.Y.Liu +3 位作者 W.Zhang L.T.Liu K.C.Sun S.W.Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期200-216,共17页
In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are stu... In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures. 展开更多
关键词 Porous cantilever twisted plate Variable thickness Natural vibration Frequency veering mode exchange
下载PDF
Assignment of terahertz vibrational modes of L-glutamine using density functional theory within generalized-gradient approximation 被引量:5
18
作者 张寒 张朝晖 +3 位作者 赵小燕 张天尧 燕芳 申江 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期211-218,共8页
The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-g... The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation(GGA), Perdew–Burke–Ernzerhof(PBE), PBE for solids(PBEsol), PBE with Wu–Cohen exchange(WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogenbonded functional groups. 展开更多
关键词 terahertz vibrational modes amino acid plane-wave density functional theory generalized-gradient approximation
下载PDF
Influence of vibration mode on the screening process 被引量:3
19
作者 Dong Hailin Liu Chusheng +1 位作者 Zhao Yuemin Zhao Lala 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期95-98,共4页
The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circu... The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes. 展开更多
关键词 vibration mode Screening process Particles Discrete element method
下载PDF
Fast self-adapting high-order sliding mode control for a class of uncertain nonlinear systems 被引量:1
20
作者 GUO Fuhui LU Pingli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期690-699,共10页
A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced i... A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results. 展开更多
关键词 adaptive control law geometric homogeneity high-order sliding mode(HOSM) integral sliding mode(ISM)
下载PDF
上一页 1 2 180 下一页 到第
使用帮助 返回顶部