It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gra...It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration sch...This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.展开更多
This paper reviews some main results and progress concerning with nonholonomic system control,especially focusing on the networked chained system coordination.The controllability of nonholonomic system,the control met...This paper reviews some main results and progress concerning with nonholonomic system control,especially focusing on the networked chained system coordination.The controllability of nonholonomic system,the control method of nonholonomic system,the chained form transformation,the basic graph theory for multi-agent systems are recalled,respectively.Some important definitions,lemmas,theorems and dynamics are elaborated.Both the consensus and formation control problems for networked nonholonomic chained systems are summarised.Finally,some open questions are proposed.展开更多
An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several poi...An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.展开更多
As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simu...As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot.展开更多
A generalized first Noether theorem (GFNT) originating from the invariance under the finite continuous group for singular high-order Lagrangian and a generalized second Noether theorem (or generalized Noether identiti...A generalized first Noether theorem (GFNT) originating from the invariance under the finite continuous group for singular high-order Lagrangian and a generalized second Noether theorem (or generalized Noether identities (GNI)) for variant system under the infinite continuous group of field theory in canonical formalism are derived. The strong and weak conservation laws in canonical formalism are also obtained. It is pointed out that some variant systems also have Dirac constraint. Based on the canonical action, the generalized Poincaré-Cartan integral invariant (GPCⅡ) for singular high-order Lagrangian in the field theory is deduced. Some confusions in literafure are clarified. The GPCⅡ connected with canonical equations and canonical transformation are discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272050,11202090,11472124,11572034,and 11572145)the Science and Technology Research Project of Liaoning Province,China(Grant No.L2013005)+1 种基金China Postdoctoral Science Foundation(Grant No.2014M560203)the Doctor Start-up Fund in Liaoning Province of China(Grant No.20141050)
文摘It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
基金supported by National Natural Science Foundation of China under Grant No.10672143the Natural Science Foundation of Henan Province under Grant No.0511022200
文摘This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.
基金supported in part by the National Natural Science Foundation of China under[grant number 61321002],[grant number 61120106010],[grant number 61175112]the programme for New Century Excellent Talents in University+1 种基金the Social Science Foundation of Fujian Province under[grant number 2014B182]the Beijing Education Committee Cooperation Building Foundation Project.
文摘This paper reviews some main results and progress concerning with nonholonomic system control,especially focusing on the networked chained system coordination.The controllability of nonholonomic system,the control method of nonholonomic system,the chained form transformation,the basic graph theory for multi-agent systems are recalled,respectively.Some important definitions,lemmas,theorems and dynamics are elaborated.Both the consensus and formation control problems for networked nonholonomic chained systems are summarised.Finally,some open questions are proposed.
基金supported by The National Key Research and Development Program of China(Grants Nos.2017YFA0603901 and 2017YFC1501901)The National Natural Science Foundation of China(Grant No.41522504)。
文摘An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.
基金supported by National Natural Science Foundation of China (Grant No. 50375071)Commission of Science, Technology and Industry for National Defense Pre-research Foundation of China (Grant No. C4220062501)
文摘As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot.
基金Project supported by the National Natural Science Foundation of China and Beijing Natural Science Foundation.
文摘A generalized first Noether theorem (GFNT) originating from the invariance under the finite continuous group for singular high-order Lagrangian and a generalized second Noether theorem (or generalized Noether identities (GNI)) for variant system under the infinite continuous group of field theory in canonical formalism are derived. The strong and weak conservation laws in canonical formalism are also obtained. It is pointed out that some variant systems also have Dirac constraint. Based on the canonical action, the generalized Poincaré-Cartan integral invariant (GPCⅡ) for singular high-order Lagrangian in the field theory is deduced. Some confusions in literafure are clarified. The GPCⅡ connected with canonical equations and canonical transformation are discussed.