We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control e...In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T...In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.展开更多
In this paper, the integration methods of dynamics equations of relative motion of variable mass nonlinear nonholonomic system are given such as the gradient method, the single-component method and the field method. F...In this paper, the integration methods of dynamics equations of relative motion of variable mass nonlinear nonholonomic system are given such as the gradient method, the single-component method and the field method. Firstly, the dynamics equations are written in the canonical form and the field form. Secondly, the gradient method, the single-component method and the field method are used to integrate the dynamics equations of the corresponding constant mass holonomic system in inertial reference frame respectively. With the restriction of nonholonomic constraints to the initial conditions being considered, the solutions of the dynamics equations of variable mass nonlinear nonholonomic system in noninertial reference frame are obtained.展开更多
Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable ...Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.展开更多
In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization...In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.展开更多
With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstr...With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.展开更多
Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime.However, existing S-parameter based parameter retrieval approaches developed for linear metamaterials d...Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime.However, existing S-parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived.Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power,high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposed approach can be widely used in the research of active metamaterials.展开更多
In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables...In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables,the equation is transformed into an ordinary differential equation.Then,under the parameter conditions,we obtain the Hamiltonian system and phase portraits.Finally,traveling wave solutions which contains solitary,periodic and kink wave so-lutions are constructed by integrating along the homoclinic or heteroclinic orbits.In addition,by choosing appropriate values to parameters,different types of structures of solutions can be displayed graphically.Moreover,the computational work and it’sfigures show that this tech-nique is influential and efficient.展开更多
In this paper, iterative learning control (ILC) design is studied for an iteration-varying tracking problem in which reference trajectories are generated by high-order internal models (HOLM). An HOlM formulated as...In this paper, iterative learning control (ILC) design is studied for an iteration-varying tracking problem in which reference trajectories are generated by high-order internal models (HOLM). An HOlM formulated as a polynomial operator between consecutive iterations describes the changes of desired trajectories in the iteration domain and makes the iterative learning problem become iteration varying. The classical ILC for tracking iteration-invariant reference trajectories, on the other hand, is a special case of HOlM where the polynomial renders to a unity coefficient or a special first-order internal model. By inserting the HOlM into P-type ILC, the tracking performance along the iteration axis is investigated for a class of continuous-time nonlinear systems. Time-weighted norm method is utilized to guarantee validity of proposed algorithm in a sense of data-driven control.展开更多
Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the La...Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.展开更多
Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction ...Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.展开更多
A new nonholonomic transmission mechanism is proposed based on thenonholonomic theory and nonlinear control principle, and combined with conditions of thenonholonomic motion planning and control, that is researched to...A new nonholonomic transmission mechanism is proposed based on thenonholonomic theory and nonlinear control principle, and combined with conditions of thenonholonomic motion planning and control, that is researched to compose method of the motiontransfer chain from this transmission mechanism, on which a new nonholonomic manipulator isdesigned. This nonholonomic manipulator is a controllable multi-joint manipulator that actuated onlyby two-servo electromotor. Its motion expresses the characteristic of nonholonomy constraint andnonlinear, and that also satisfies the chained form convertibility. And then, using the nonlinearcontrol principle of chained system, motion characteristic of the nonholonomic manipulator isapplied. From simulation verification and analysis, the usefulness of the theoretical design andcontrol strategies is shown, and that is important in design and research of handiness robot andmulti-finger robot hand.展开更多
This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration sch...This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.展开更多
The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory a...The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.展开更多
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.展开更多
In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among...In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among agents.For each agent with lower triangular structure,a time-varying gain compensator is first designed by relative output information of neighboring agents.Subsequently,a distributed controller with dynamic event-triggered mechanism is proposed to drive the bipartite consensus error to zero.It is worth noting that an internal dynamic variable is introduced in triggering function,which plays an essential role in excluding the Zeno behavior and reducing energy consumption.Furthermore,the dynamic event-triggered control protocol is developed for upper triangular multi-agent systems to realize the bipartite consensus without Zeno behavior.Finally,simulation examples are provided to illustrate the effectiveness of the presented results.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
基金supported by National Natural Science Founda-tion of China (No. 60774010)Natural Science Foundation of JiangsuProvince, Jiangsu "Six Top Talents" (No. 07-A-020)+1 种基金Program for Fundamental Research of Natural Sciences in Universities of JiangsuProvince (No. 07KJB510114)Natural Science Foundation ofXuzhou Normal University (No. 08XLB20)
文摘In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
基金This work is supported by the National Natural Science Foundation of China(11661058,11761053)the Natural Science Foundation of Inner Mongolia(2017MS0107)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07).
文摘In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.
文摘In this paper, the integration methods of dynamics equations of relative motion of variable mass nonlinear nonholonomic system are given such as the gradient method, the single-component method and the field method. Firstly, the dynamics equations are written in the canonical form and the field form. Secondly, the gradient method, the single-component method and the field method are used to integrate the dynamics equations of the corresponding constant mass holonomic system in inertial reference frame respectively. With the restriction of nonholonomic constraints to the initial conditions being considered, the solutions of the dynamics equations of variable mass nonlinear nonholonomic system in noninertial reference frame are obtained.
基金Project supported by the Key Program of the Natural Science Foundation of Sichuan Provincial Education Department (Grant No. 2006A124)the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant No. 05JY029-084)
文摘Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.
基金Program for New Century Excellent Talents in University of China (NCET-05-0607)National Natural Science Fou-ndation of China (No.60774010)Project for Fundamental Research of Natural Sciences in Universities of Jingsu Province (No.07KJB510114)
文摘In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875008,12075034,11975001,and 11975172)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(Grant No.SKL2018KF04)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A09-3)。
文摘With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61401395 and 61604128)the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Y201533913)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2016QNA4025 and 2016QN81002)
文摘Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime.However, existing S-parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived.Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power,high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposed approach can be widely used in the research of active metamaterials.
基金supported by Hunan Provincial Natural Science Foundation of China Grant No.2021JJ30297Scientific Research Fund of Hunan Provincial Education Department No.22A0478 and No.22C0365+1 种基金Hunan Province Graduate Research Innovation,China Project No.CX20231208Research and Innovation team of Hunan Institute of Science and Technology (Grant No.2019-TD-15).
文摘In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables,the equation is transformed into an ordinary differential equation.Then,under the parameter conditions,we obtain the Hamiltonian system and phase portraits.Finally,traveling wave solutions which contains solitary,periodic and kink wave so-lutions are constructed by integrating along the homoclinic or heteroclinic orbits.In addition,by choosing appropriate values to parameters,different types of structures of solutions can be displayed graphically.Moreover,the computational work and it’sfigures show that this tech-nique is influential and efficient.
基金supported by the General Program (No.60774022)the State Key Program of National Natural Science Foundation of China(No.60834001)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University (No.RCS2009ZT011)
文摘In this paper, iterative learning control (ILC) design is studied for an iteration-varying tracking problem in which reference trajectories are generated by high-order internal models (HOLM). An HOlM formulated as a polynomial operator between consecutive iterations describes the changes of desired trajectories in the iteration domain and makes the iterative learning problem become iteration varying. The classical ILC for tracking iteration-invariant reference trajectories, on the other hand, is a special case of HOlM where the polynomial renders to a unity coefficient or a special first-order internal model. By inserting the HOlM into P-type ILC, the tracking performance along the iteration axis is investigated for a class of continuous-time nonlinear systems. Time-weighted norm method is utilized to guarantee validity of proposed algorithm in a sense of data-driven control.
文摘Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.
基金Project supported by the National Natural Science Foundation of China(Nos.11372018 and 11572018)
文摘Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.
基金This project is supported by National High-Tech Program for CIMS, China (No.2003AA412030) and Robotics Laboratory Shenyang Institute of Automation. Chinese Academy of Sciences (No.RL200201).
文摘A new nonholonomic transmission mechanism is proposed based on thenonholonomic theory and nonlinear control principle, and combined with conditions of thenonholonomic motion planning and control, that is researched to compose method of the motiontransfer chain from this transmission mechanism, on which a new nonholonomic manipulator isdesigned. This nonholonomic manipulator is a controllable multi-joint manipulator that actuated onlyby two-servo electromotor. Its motion expresses the characteristic of nonholonomy constraint andnonlinear, and that also satisfies the chained form convertibility. And then, using the nonlinearcontrol principle of chained system, motion characteristic of the nonholonomic manipulator isapplied. From simulation verification and analysis, the usefulness of the theoretical design andcontrol strategies is shown, and that is important in design and research of handiness robot andmulti-finger robot hand.
基金supported by National Natural Science Foundation of China under Grant No.10672143the Natural Science Foundation of Henan Province under Grant No.0511022200
文摘This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11975143)Nature Science Foundation of Shandong Province of China(Grant No.ZR2018MA017)+1 种基金the Taishan Scholars Program of Shandong Province,China(Grant No.ts20190936)the Shandong University of Science and Technology Research Fund(Grant No.2015TDJH102).
文摘The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.
文摘This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.
基金This work was supported by the National Natural Science Foundation of China(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among agents.For each agent with lower triangular structure,a time-varying gain compensator is first designed by relative output information of neighboring agents.Subsequently,a distributed controller with dynamic event-triggered mechanism is proposed to drive the bipartite consensus error to zero.It is worth noting that an internal dynamic variable is introduced in triggering function,which plays an essential role in excluding the Zeno behavior and reducing energy consumption.Furthermore,the dynamic event-triggered control protocol is developed for upper triangular multi-agent systems to realize the bipartite consensus without Zeno behavior.Finally,simulation examples are provided to illustrate the effectiveness of the presented results.