Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Us...Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Using piecewise polynomial interpolation thought,this model can dynamically predict the general trend of time series data.Combined with low-order polynomial,the cubic spline interpolation has smaller error,avoids the Runge phenomenon of high-order polynomial,and has better approximation effect.Meanwhile,prediction is implemented with the newest information according to the rolling and feedback mechanism and fluctuating error is controlled well to improve prediction accuracy in time-varying environment.Case study using the living electricity consumption data of Jiangsu province in 2008 is presented to demonstrate the effectiveness of the proposed model.展开更多
Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the...Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.展开更多
To predict the annual total yields of Chinese aquatic products in future five years ( 2011-2015) ,based on the theory and method of gray system,this paper firstly establishes a conventional GM ( 1,1) model and a gray ...To predict the annual total yields of Chinese aquatic products in future five years ( 2011-2015) ,based on the theory and method of gray system,this paper firstly establishes a conventional GM ( 1,1) model and a gray metabolic GM ( 1,1) model respectively to predict the annual total yields of Chinese aquatic products in 2006-2009 and compare the prediction accuracy between these two models. Then,it selects the model with higher accuracy to predict the annual total yields of Chinese aquatic products in future five years. The comparison indicates that gray metabolic GM ( 1,1) model has higher prediction accuracy and smaller error,thus it is more suitable for prediction of annual total yields of aquatic products. Therefore,it adopts the gray metabolic GM ( 1,1) model to predict annual total yields of Chinese aquatic products in 2011-2015. The prediction results of annual total yields are 55. 32,57. 46,59. 72,62. 02 and 64. 43 million tons respectively in future five years with annual average increase rate of about 3. 7% ,much higher than the objective of 2. 2% specified in the Twelfth Five-Year Plan of the National Fishery Development ( 2011 to 2015) . The results of this research show that the gray metabolic GM ( 1,1) model is suitable for prediction of yields of aquatic products and the total yields of Chinese aquatic products in 2011-2015 will totally be able to realize the objective of the Twelfth Five-Year Plan.展开更多
基金This work has been supported by the National 863 Key Project Grant No. 2008AA042901, National Natural Science Foundation of China Grant No.70631003 and No.90718037, Foundation of Hefei University of Technology Grant No. 2010HGXJ0083.
文摘Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Using piecewise polynomial interpolation thought,this model can dynamically predict the general trend of time series data.Combined with low-order polynomial,the cubic spline interpolation has smaller error,avoids the Runge phenomenon of high-order polynomial,and has better approximation effect.Meanwhile,prediction is implemented with the newest information according to the rolling and feedback mechanism and fluctuating error is controlled well to improve prediction accuracy in time-varying environment.Case study using the living electricity consumption data of Jiangsu province in 2008 is presented to demonstrate the effectiveness of the proposed model.
文摘Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.
基金Supported by Special Project for Construction of Modern Agricultural Industrial Technology System(Grant No.:CARS-46-05)Scientific and Technological Project of Huazhong Agricultural University(Grant No.:52902-0900206038)National Natural Science Foundation of China(Grant No:31201719)
文摘To predict the annual total yields of Chinese aquatic products in future five years ( 2011-2015) ,based on the theory and method of gray system,this paper firstly establishes a conventional GM ( 1,1) model and a gray metabolic GM ( 1,1) model respectively to predict the annual total yields of Chinese aquatic products in 2006-2009 and compare the prediction accuracy between these two models. Then,it selects the model with higher accuracy to predict the annual total yields of Chinese aquatic products in future five years. The comparison indicates that gray metabolic GM ( 1,1) model has higher prediction accuracy and smaller error,thus it is more suitable for prediction of annual total yields of aquatic products. Therefore,it adopts the gray metabolic GM ( 1,1) model to predict annual total yields of Chinese aquatic products in 2011-2015. The prediction results of annual total yields are 55. 32,57. 46,59. 72,62. 02 and 64. 43 million tons respectively in future five years with annual average increase rate of about 3. 7% ,much higher than the objective of 2. 2% specified in the Twelfth Five-Year Plan of the National Fishery Development ( 2011 to 2015) . The results of this research show that the gray metabolic GM ( 1,1) model is suitable for prediction of yields of aquatic products and the total yields of Chinese aquatic products in 2011-2015 will totally be able to realize the objective of the Twelfth Five-Year Plan.