This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contai...This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contained in the spectra,the vectors of the gamma-ray energy spectra from Euclidean space,which are fingerprints of the different types of radionuclides,were mapped to matrices in the Banach space.Subsequently,to make the spectra in matrix form easier to apply to image-based deep learning frameworks,the matrices of the gamma-ray energy spectra were mapped to images in the RGB color space.A deep convolutional neural network(DCNN)model was constructed and trained on the ImageNet dataset.The mapped gamma-ray energy spectrum images were applied as inputs to the DCNN model,and the corresponding outputs of the convolution layers and fully connected layers were transferred as descriptors of the images to construct a new classification model for radionuclide identification.The transferred image descriptors consist of global and local features,where the activation vectors of fully connected layers are global features,and activations from convolution layers are local features.A series of comparative experiments between the transferred image descriptors,peak information,features extracted by the histogram of the oriented gradients(HOG),and scale-invariant feature transform(SIFT)using both synthetic and measured data were applied to 11 classical classifiers.The results demonstrate that although the gamma-ray energy spectrum images are completely unfamiliar to the DCNN model and have not been used in the pre-training process,the transferred image descriptors achieved good classification results.The global features have strong semantic information,which achieves an average accuracy of 92.76%and 94.86%on the synthetic dataset and measured dataset,respectively.The results of the statistical comparison of features demonstrate that the proposed approach outperforms the peak-searching-based method,HOG,and SIFT on the synthetic and measured datasets.展开更多
In audio classification applications, features extracted from the frequency domain representation of signals are typically focused on the magnitude spectral content, while the phase spectral content is ignored. The co...In audio classification applications, features extracted from the frequency domain representation of signals are typically focused on the magnitude spectral content, while the phase spectral content is ignored. The conventional Fourier Phase Spectrum is a highly discontinuous function;thus, it is not appropriate for feature extraction for classification applications, where function continuity is required. In this work, the sources of phase spectral discontinuities are detected, categorized and compensated, resulting in a phase spectrum with significantly reduced discontinuities. The Hartley Phase Spectrum, introduced as an alternative to the conventional Fourier Phase Spectrum, encapsulates the phase content of the signal more efficiently compared with its Fourier counterpart because, among its other properties, it does not suffer from the phase ‘wrapping ambiguities’ introduced due to the inverse tangent function employed in the Fourier Phase Spectrum computation. In the proposed feature extraction method, statistical features extracted from the Hartley Phase Spectrum are combined with statistical features extracted from the magnitude related spectrum of the signals. The experimental results show that the classification score is higher in case the magnitude and the phase related features are combined, as compared with the case where only magnitude features are used.展开更多
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration...Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.展开更多
The properties of 1(1/2)-spectrum are proved and the performances are an- alyzed. By means of the spectrum, the basic frequency component of the harmonic signals can be enhanced. Gaussian color noise and symetrical di...The properties of 1(1/2)-spectrum are proved and the performances are an- alyzed. By means of the spectrum, the basic frequency component of the harmonic signals can be enhanced. Gaussian color noise and symetrical distribution noise can be canceled. And non-quadratic phase coupling harmonic components in harmonic signal can be reduced. The ship radiated-noise is analyzed and its 7 features are extracted by the spectrum. By means of B-P artificial neural network, three type ships are classified according to extracted features. The classification results about the three type ships A, B and C are 90%, 91.3% and 85.7%. respectively.展开更多
This series of papers deal with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. Based on the studies of a large amount of ship radiat...This series of papers deal with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. Based on the studies of a large amount of ship radiated-noise data, which has been collected from actual ships on the sea, effectively recognizable features are extracted. Such features include line-spectrum features, stationary and nonstationary spectrum features as well as rhythm features. Finally the categorization are tested by unknown samples on the sea, including 33 surface vessels, 8 underwater vessels in 30 operating conditions. Methods for memorization and classilication are also explored in the project. Paper (Ⅲ) is the thirird in the series. It deals with the extraction method of modulation information in double-frequency power spectrum and the establishment of pattern plate of double-frequency spectrum as well as average power spectrum. To extract features from double-frequency spectrum, the tendency of wave is subtracted from the wave of each channel and the modulation of high frequency is compensated. The modulation degree of lines is shown by relative Value and converted to fuzzy value by fuzzy function. The pattern-plate of double-frequency spectrum memorises stable line and its respective modulation strength. The pattern-plate of average power spectrum memorizes the spectra mean of typical samples and the standard variance展开更多
The features of the ship noises are analyzed by using the higher-order spectrum (HOS) after studying their distribution. The results show that the different ship noise has different ranges of the main frequency. The m...The features of the ship noises are analyzed by using the higher-order spectrum (HOS) after studying their distribution. The results show that the different ship noise has different ranges of the main frequency. The main frequencies of the first class ships are less than 120 Hz, while the second class ships drop in 130 Hz -- 320 Hz. The different relationship between w1 and w2 corresponds to different bispectrum graph. There are the same results in the trispectrum. The feature vector is consist of the wls which correspond to the maximum bispectrum B(wl, wl) and the maximum trispectrum B(wl, w1,wl) respectively, the al, w2 which correspond to the maximum bispectrum B(wl, w2).展开更多
针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value medi...针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value median decomposition,SVMD)相结合。首先,考虑到旋转机械的故障特征,对轴承故障信号采用1步长方法构造Hankel矩阵;其次,考虑到信号的协方差矩阵对于信号自相关去噪的优势,进而计算Hankel的协方差矩阵并进行空间重构;再次,采用奇异值差分谱方法对重构后的协方差矩阵信号进行分解处理而实现初步降噪,通过奇异值中值分解方法对其进行分解和筛选处理而完成二次降噪,并根据处理后信号的频谱包络,实现轴承故障特征信息的提取;最后,通过滚动轴承仿真数据分析得出,所提方法能够有效提取出噪声信号的故障特征及其谐波,实现不同轴承故障类型特征的有效提取,为滚动轴承故障复杂信号处理和诊断提供了一种新的方法和途径。展开更多
基金supported by the National Defense Fundamental Research Project(No.JCKY2020404C004)Sichuan Science and Technology Program(No.22NSFSC0044).
文摘This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contained in the spectra,the vectors of the gamma-ray energy spectra from Euclidean space,which are fingerprints of the different types of radionuclides,were mapped to matrices in the Banach space.Subsequently,to make the spectra in matrix form easier to apply to image-based deep learning frameworks,the matrices of the gamma-ray energy spectra were mapped to images in the RGB color space.A deep convolutional neural network(DCNN)model was constructed and trained on the ImageNet dataset.The mapped gamma-ray energy spectrum images were applied as inputs to the DCNN model,and the corresponding outputs of the convolution layers and fully connected layers were transferred as descriptors of the images to construct a new classification model for radionuclide identification.The transferred image descriptors consist of global and local features,where the activation vectors of fully connected layers are global features,and activations from convolution layers are local features.A series of comparative experiments between the transferred image descriptors,peak information,features extracted by the histogram of the oriented gradients(HOG),and scale-invariant feature transform(SIFT)using both synthetic and measured data were applied to 11 classical classifiers.The results demonstrate that although the gamma-ray energy spectrum images are completely unfamiliar to the DCNN model and have not been used in the pre-training process,the transferred image descriptors achieved good classification results.The global features have strong semantic information,which achieves an average accuracy of 92.76%and 94.86%on the synthetic dataset and measured dataset,respectively.The results of the statistical comparison of features demonstrate that the proposed approach outperforms the peak-searching-based method,HOG,and SIFT on the synthetic and measured datasets.
文摘In audio classification applications, features extracted from the frequency domain representation of signals are typically focused on the magnitude spectral content, while the phase spectral content is ignored. The conventional Fourier Phase Spectrum is a highly discontinuous function;thus, it is not appropriate for feature extraction for classification applications, where function continuity is required. In this work, the sources of phase spectral discontinuities are detected, categorized and compensated, resulting in a phase spectrum with significantly reduced discontinuities. The Hartley Phase Spectrum, introduced as an alternative to the conventional Fourier Phase Spectrum, encapsulates the phase content of the signal more efficiently compared with its Fourier counterpart because, among its other properties, it does not suffer from the phase ‘wrapping ambiguities’ introduced due to the inverse tangent function employed in the Fourier Phase Spectrum computation. In the proposed feature extraction method, statistical features extracted from the Hartley Phase Spectrum are combined with statistical features extracted from the magnitude related spectrum of the signals. The experimental results show that the classification score is higher in case the magnitude and the phase related features are combined, as compared with the case where only magnitude features are used.
基金The authors gratefully appreciate all the reviewers and the editor for their valuable comments and advices about our manuscript. The authors gratefully acknowledge tile support of this research work by the National Natural Science Foundation of China (Grant No. 51335006).
文摘Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
文摘The properties of 1(1/2)-spectrum are proved and the performances are an- alyzed. By means of the spectrum, the basic frequency component of the harmonic signals can be enhanced. Gaussian color noise and symetrical distribution noise can be canceled. And non-quadratic phase coupling harmonic components in harmonic signal can be reduced. The ship radiated-noise is analyzed and its 7 features are extracted by the spectrum. By means of B-P artificial neural network, three type ships are classified according to extracted features. The classification results about the three type ships A, B and C are 90%, 91.3% and 85.7%. respectively.
文摘This series of papers deal with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. Based on the studies of a large amount of ship radiated-noise data, which has been collected from actual ships on the sea, effectively recognizable features are extracted. Such features include line-spectrum features, stationary and nonstationary spectrum features as well as rhythm features. Finally the categorization are tested by unknown samples on the sea, including 33 surface vessels, 8 underwater vessels in 30 operating conditions. Methods for memorization and classilication are also explored in the project. Paper (Ⅲ) is the thirird in the series. It deals with the extraction method of modulation information in double-frequency power spectrum and the establishment of pattern plate of double-frequency spectrum as well as average power spectrum. To extract features from double-frequency spectrum, the tendency of wave is subtracted from the wave of each channel and the modulation of high frequency is compensated. The modulation degree of lines is shown by relative Value and converted to fuzzy value by fuzzy function. The pattern-plate of double-frequency spectrum memorises stable line and its respective modulation strength. The pattern-plate of average power spectrum memorizes the spectra mean of typical samples and the standard variance
基金The project is supported by National Education Ministry Doctor Foundation of China
文摘The features of the ship noises are analyzed by using the higher-order spectrum (HOS) after studying their distribution. The results show that the different ship noise has different ranges of the main frequency. The main frequencies of the first class ships are less than 120 Hz, while the second class ships drop in 130 Hz -- 320 Hz. The different relationship between w1 and w2 corresponds to different bispectrum graph. There are the same results in the trispectrum. The feature vector is consist of the wls which correspond to the maximum bispectrum B(wl, wl) and the maximum trispectrum B(wl, w1,wl) respectively, the al, w2 which correspond to the maximum bispectrum B(wl, w2).
文摘针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value median decomposition,SVMD)相结合。首先,考虑到旋转机械的故障特征,对轴承故障信号采用1步长方法构造Hankel矩阵;其次,考虑到信号的协方差矩阵对于信号自相关去噪的优势,进而计算Hankel的协方差矩阵并进行空间重构;再次,采用奇异值差分谱方法对重构后的协方差矩阵信号进行分解处理而实现初步降噪,通过奇异值中值分解方法对其进行分解和筛选处理而完成二次降噪,并根据处理后信号的频谱包络,实现轴承故障特征信息的提取;最后,通过滚动轴承仿真数据分析得出,所提方法能够有效提取出噪声信号的故障特征及其谐波,实现不同轴承故障类型特征的有效提取,为滚动轴承故障复杂信号处理和诊断提供了一种新的方法和途径。