A high-order Lagrangian cell-centered conservative gas dynamics scheme is presented on unstructured meshes. A high-order piecewise pressure of the cell is intro- duced. With the high-order piecewise pressure of the ce...A high-order Lagrangian cell-centered conservative gas dynamics scheme is presented on unstructured meshes. A high-order piecewise pressure of the cell is intro- duced. With the high-order piecewise pressure of the cell, the high-order spatial discretiza- tion fluxes are constructed. The time discretization of the spatial fluxes is performed by means of the Taylor expansions of the spatial discretization fluxes. The vertex velocities are evaluated in a consistent manner due to an original solver located at the nodes by means of momentum conservation. Many numerical tests are presented to demonstrate the robustness and the accuracy of the scheme.展开更多
This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of soun...This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time sub- cell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11172050,11372051,and 11001027)
文摘A high-order Lagrangian cell-centered conservative gas dynamics scheme is presented on unstructured meshes. A high-order piecewise pressure of the cell is intro- duced. With the high-order piecewise pressure of the cell, the high-order spatial discretiza- tion fluxes are constructed. The time discretization of the spatial fluxes is performed by means of the Taylor expansions of the spatial discretization fluxes. The vertex velocities are evaluated in a consistent manner due to an original solver located at the nodes by means of momentum conservation. Many numerical tests are presented to demonstrate the robustness and the accuracy of the scheme.
基金supported by the National Natural Science Foundation of China (No. 11172050)
文摘This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time sub- cell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.