A PLU-SGS method based on a time-derivative preconditioning algorithm and LU-SGS method is developed in order to calculate the Navier-Stokes equations at all speeds. The equations were discretized using A USMPW scheme...A PLU-SGS method based on a time-derivative preconditioning algorithm and LU-SGS method is developed in order to calculate the Navier-Stokes equations at all speeds. The equations were discretized using A USMPW scheme in conjunction with the third-order MUSCL scheme with Van Leer limiter. The present method was applied to solve the multidimensional compressible Navier-Stokes equations in curvilinear coordinates. Characteristic boundary conditions based on the eigensystem of the preconditioned equations were employed. In order to examine the performance of present method, driven-cavity flow at various Reynolds numbers and viscous flow through a convergent-divergent nozzle at supersonic were selected to rest this method. The computed results were compared with the experimental data or the other numerical results available in literature and good agreements between them are obtained. The results show that the present method is accurate, self-adaptive and stable for a wide range of flow conditions from low speed to supersonic flows.展开更多
文摘A PLU-SGS method based on a time-derivative preconditioning algorithm and LU-SGS method is developed in order to calculate the Navier-Stokes equations at all speeds. The equations were discretized using A USMPW scheme in conjunction with the third-order MUSCL scheme with Van Leer limiter. The present method was applied to solve the multidimensional compressible Navier-Stokes equations in curvilinear coordinates. Characteristic boundary conditions based on the eigensystem of the preconditioned equations were employed. In order to examine the performance of present method, driven-cavity flow at various Reynolds numbers and viscous flow through a convergent-divergent nozzle at supersonic were selected to rest this method. The computed results were compared with the experimental data or the other numerical results available in literature and good agreements between them are obtained. The results show that the present method is accurate, self-adaptive and stable for a wide range of flow conditions from low speed to supersonic flows.