In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking adva...In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking advantage of AI by integrating it into their day-to-day operation.Meanwhile,seven billion people worldwide shape the world’s energy system and directly impact the fundamental drivers of energy,both renewable and non-renewable sources,to meet the demand for electricity from them.These energy sources can be reached from nature such as solar,wind,etc.,and human-made such as NPPs(nuclear power plants)in the form of either fission as an old technology since the Manhattan project and in the near future as fusion in the form of magnetic or inertial confinements.Meanwhile,AI controlling nuclear reactors are about to happen.The basic idea is to apply AI with its two subset components as ML(machine learning),and DL(deep learning)techniques to go through the mountains of data that come from a reactor,spot patterns in it,and calling them to the unit’s human attention operators is not invadable either.Designers of such nuclear reactors will combine simulation and real-world data,comparing scenarios from each to develop“confidence[in]what they can predict and what is the range of uncertainty of their prediction”.Adding that,in the end,the operator will make the final decisions in order to keep these power plants safe while they are in operation and how to secure them against cyber-attack natural or human-made disasters.In this short communication article,we would like to see how we can prove some of these concepts;then a NPP manufacturer can pick it up and use it in their designs of a new generation of these reactors.展开更多
New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the depen...New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.展开更多
We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, di...We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new...The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new financial instrument. The author analyzed European Union and Kazakhstani experience of economic incentives to reduce emissions and introduction of renewable energy sources. As a result of conducted research, the proposal to produce and circulate new financial instruments in Kazakhstan is made; as well as economic and environmental factors of renewable energy sources in the Republic of Kazakhstan are defined.展开更多
This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator co...This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator cooperated in series, parallel and hybrid system with main energy system. Its solution enable obtain independent individual energy source in different work exploitations. One of problems concerned with alternative energy source is changes of output voltages and output power dependence of climatic conditions. Possible solution is application of decoupled adjustable speed generation system in renewable energy generation. The decoupled generation system consists of: alternative energy source, internal combustion engine drives permanent magnet generator and DC/AC, or AC/AC converter. Performance of single decoupled generation set is discussed supported by results of laboratory tests. To provide high quality voltage is applied an additional energy storage, made from super capacitor and bidirectional DC/DC convert. Such system performs very stiff voltage in any load condition. Integration of solar battery panels or renewable wind energy system is provided via DC link of the variable speed decoupled autonomous generation system. Results of computer simulation and laboratory experiments are presented in the paper.展开更多
Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, ...Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, secure and environment friendly energy sources becomes a key concern. At present, a great majority of remote mines relies heavily on diesel fuel that has to be transported over long distances. In this context, some of the renewable energy sources such as wind power or solar energy seem to provide potentially interesting and viable alternatives. Mine operations, however, have a very particular character, much different from other industries and from other potential applications of renewable power sources. This paper presents operational conditions of some mining operations, particularly those in remote regions, in the context of their energy needs. The authors analyse current and future capacities to decrease a reliance of remote mines on conventional fuels and energy. The paper also analyses and discusses the conditions to be met by alternative energy sources so that they might become a viable alternative for remote mining operations.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renew...Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renewable energy sources. The exploitation of these new forms of energy, solar, wind, earth and bio-fuels, initiated the development and application of new technologies, so far unused in practice. Rapid development and wide application of installations for use of renewable energy in many households and companies opened a whole new risk and danger in the fire protection field. With the purpose of introducing this problem to engineers in the area of fire protection, health and safety at work, this paper systematically presents various types of facilities for exploitation of renewable energy sources as well as potential dangers, risks and issues related to their safe operation.展开更多
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v...RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.展开更多
Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)so...Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)sources into electric grids to satisfy energy demands.Since energy utilization is highly related to national energy policy,energy prediction using artificial intelligence(AI)and deep learning(DL)based models can be employed for energy prediction on RE and NRE power resources.Predicting energy consumption of RE and NRE sources using effective models becomes necessary.With this motivation,this study presents a new multimodal fusionbased predictive tool for energy consumption prediction(MDLFM-ECP)of RE and NRE power sources.Actual data may influence the prediction performance of the results in prediction approaches.The proposed MDLFMECP technique involves pre-processing,fusion-based prediction,and hyperparameter optimization.In addition,the MDLFM-ECP technique involves the fusion of four deep learning(DL)models,namely long short-termmemory(LSTM),bidirectional LSTM(Bi-LSTM),deep belief network(DBN),and gated recurrent unit(GRU).Moreover,the chaotic cat swarm optimization(CCSO)algorithm is applied to tune the hyperparameters of the DL models.The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models,showing the novelty of the work.A series of simulations took place to validate the superior performance of the proposed method,and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%.展开更多
This paper proposed a new technology way for seawater desalination which used renewable energy(wind energy and solar energy).The effects of practical application showed that remote islands and cage culture zones in th...This paper proposed a new technology way for seawater desalination which used renewable energy(wind energy and solar energy).The effects of practical application showed that remote islands and cage culture zones in the bay that lack electricity and water are very suitable for using small seawater desalination devices that do not require consumption of conventional energy.展开更多
As water scarcity is becoming a growing threat to human development, finding effective solutions has become an urgent need. To make better use of water resources, seawater desalination and storage systems using renewa...As water scarcity is becoming a growing threat to human development, finding effective solutions has become an urgent need. To make better use of water resources, seawater desalination and storage systems using renewable energy sources(RES) are designed and implemented around the world. In this paper, an optimal capacity planning method for RES-pumped storage-seawater desalination(RES-PS-D) system is introduced. The configuration of the RES-PS-D system is clarified first, after which a cost-benefit analysis is performed using all cost and benefit components. A function for determining maximum economic benefits of the RES-PS-D system is then established, and the constraints are proposed based on various limitations. The mixed-integer linear programming algorithm is applied to solve the optimal function. A case study is introduced to validate the feasibility and effectiveness of the method. The conclusion shows that the strategy is suitable for solving the configuration optimization problem, and finally both merits and defects of the method are discussed.展开更多
Our dependency on energy is so vital that it makes it difficult to imagine how humans can live on our planet earth without it.The demand for electricity,for example,is directly related to the growth of the population ...Our dependency on energy is so vital that it makes it difficult to imagine how humans can live on our planet earth without it.The demand for electricity,for example,is directly related to the growth of the population worldwide,and presently,to meet this demand,we need both renewable and nonrenewable energy.While nonrenewable energy has its shortcomings(negative impact on climate change,for example),renewable energy is not enough to address the ever-changing demand for energy.One way to address this need is to become more innovative,use technology more effectively,and be aware of the costs associated with different sources of renewable energy.In the case of nuclear power plants,new innovative centered around small modular reactors(SMRs)of generation 4th of these plants make them safer and less costly to own them as well as to protect them via means of cyber-security against any attack by smart malware.Of course,understanding the risks and how to address them is an integral part of the study.Natural sources of energy,such as wind and solar,are suggesting other innovating technical approaches.In this article,we are studying these factors holistically,and details have been laid out in a book by the authors’second volume of series title as Knowledge Is Power in Four Dimensions under Energy subtitle.展开更多
The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance ...The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance the performance of the steady-state adaptive cruise method(SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact boxconstrained economic operating region(EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big-M method to expedite the computation of the EBCEOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency(over twelvefold) are verified through case studies conducted on two test systems..展开更多
This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (f...This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.展开更多
The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of...The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of RESs and facilitate the integration and management in a decentralized manner. In this paper, a novel framework for optimal energy management of VPP considering key features such as handling uncertainties with RESs, reducing operating costs and regulating system voltage levels is proposed, and a two-stage stochastic simulation is formulated to address the uncertainties of RESs generation and electricity prices. Simulation result show that the framework can benefit from ensuring the energy balance and system security, as well as reducing the operation costs.展开更多
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente...A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.展开更多
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking advantage of AI by integrating it into their day-to-day operation.Meanwhile,seven billion people worldwide shape the world’s energy system and directly impact the fundamental drivers of energy,both renewable and non-renewable sources,to meet the demand for electricity from them.These energy sources can be reached from nature such as solar,wind,etc.,and human-made such as NPPs(nuclear power plants)in the form of either fission as an old technology since the Manhattan project and in the near future as fusion in the form of magnetic or inertial confinements.Meanwhile,AI controlling nuclear reactors are about to happen.The basic idea is to apply AI with its two subset components as ML(machine learning),and DL(deep learning)techniques to go through the mountains of data that come from a reactor,spot patterns in it,and calling them to the unit’s human attention operators is not invadable either.Designers of such nuclear reactors will combine simulation and real-world data,comparing scenarios from each to develop“confidence[in]what they can predict and what is the range of uncertainty of their prediction”.Adding that,in the end,the operator will make the final decisions in order to keep these power plants safe while they are in operation and how to secure them against cyber-attack natural or human-made disasters.In this short communication article,we would like to see how we can prove some of these concepts;then a NPP manufacturer can pick it up and use it in their designs of a new generation of these reactors.
文摘New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.
文摘We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
文摘The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new financial instrument. The author analyzed European Union and Kazakhstani experience of economic incentives to reduce emissions and introduction of renewable energy sources. As a result of conducted research, the proposal to produce and circulate new financial instruments in Kazakhstan is made; as well as economic and environmental factors of renewable energy sources in the Republic of Kazakhstan are defined.
文摘This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator cooperated in series, parallel and hybrid system with main energy system. Its solution enable obtain independent individual energy source in different work exploitations. One of problems concerned with alternative energy source is changes of output voltages and output power dependence of climatic conditions. Possible solution is application of decoupled adjustable speed generation system in renewable energy generation. The decoupled generation system consists of: alternative energy source, internal combustion engine drives permanent magnet generator and DC/AC, or AC/AC converter. Performance of single decoupled generation set is discussed supported by results of laboratory tests. To provide high quality voltage is applied an additional energy storage, made from super capacitor and bidirectional DC/DC convert. Such system performs very stiff voltage in any load condition. Integration of solar battery panels or renewable wind energy system is provided via DC link of the variable speed decoupled autonomous generation system. Results of computer simulation and laboratory experiments are presented in the paper.
文摘Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, secure and environment friendly energy sources becomes a key concern. At present, a great majority of remote mines relies heavily on diesel fuel that has to be transported over long distances. In this context, some of the renewable energy sources such as wind power or solar energy seem to provide potentially interesting and viable alternatives. Mine operations, however, have a very particular character, much different from other industries and from other potential applications of renewable power sources. This paper presents operational conditions of some mining operations, particularly those in remote regions, in the context of their energy needs. The authors analyse current and future capacities to decrease a reliance of remote mines on conventional fuels and energy. The paper also analyses and discusses the conditions to be met by alternative energy sources so that they might become a viable alternative for remote mining operations.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
文摘Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renewable energy sources. The exploitation of these new forms of energy, solar, wind, earth and bio-fuels, initiated the development and application of new technologies, so far unused in practice. Rapid development and wide application of installations for use of renewable energy in many households and companies opened a whole new risk and danger in the fire protection field. With the purpose of introducing this problem to engineers in the area of fire protection, health and safety at work, this paper systematically presents various types of facilities for exploitation of renewable energy sources as well as potential dangers, risks and issues related to their safe operation.
文摘RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R203)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR61This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)sources into electric grids to satisfy energy demands.Since energy utilization is highly related to national energy policy,energy prediction using artificial intelligence(AI)and deep learning(DL)based models can be employed for energy prediction on RE and NRE power resources.Predicting energy consumption of RE and NRE sources using effective models becomes necessary.With this motivation,this study presents a new multimodal fusionbased predictive tool for energy consumption prediction(MDLFM-ECP)of RE and NRE power sources.Actual data may influence the prediction performance of the results in prediction approaches.The proposed MDLFMECP technique involves pre-processing,fusion-based prediction,and hyperparameter optimization.In addition,the MDLFM-ECP technique involves the fusion of four deep learning(DL)models,namely long short-termmemory(LSTM),bidirectional LSTM(Bi-LSTM),deep belief network(DBN),and gated recurrent unit(GRU).Moreover,the chaotic cat swarm optimization(CCSO)algorithm is applied to tune the hyperparameters of the DL models.The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models,showing the novelty of the work.A series of simulations took place to validate the superior performance of the proposed method,and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%.
文摘This paper proposed a new technology way for seawater desalination which used renewable energy(wind energy and solar energy).The effects of practical application showed that remote islands and cage culture zones in the bay that lack electricity and water are very suitable for using small seawater desalination devices that do not require consumption of conventional energy.
基金supported by the National Natural Science Foundation of China (No.61703081)the Natural Science Foundation of Liaoning Province (No.20170520113)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No.LAPS19005)
文摘As water scarcity is becoming a growing threat to human development, finding effective solutions has become an urgent need. To make better use of water resources, seawater desalination and storage systems using renewable energy sources(RES) are designed and implemented around the world. In this paper, an optimal capacity planning method for RES-pumped storage-seawater desalination(RES-PS-D) system is introduced. The configuration of the RES-PS-D system is clarified first, after which a cost-benefit analysis is performed using all cost and benefit components. A function for determining maximum economic benefits of the RES-PS-D system is then established, and the constraints are proposed based on various limitations. The mixed-integer linear programming algorithm is applied to solve the optimal function. A case study is introduced to validate the feasibility and effectiveness of the method. The conclusion shows that the strategy is suitable for solving the configuration optimization problem, and finally both merits and defects of the method are discussed.
文摘Our dependency on energy is so vital that it makes it difficult to imagine how humans can live on our planet earth without it.The demand for electricity,for example,is directly related to the growth of the population worldwide,and presently,to meet this demand,we need both renewable and nonrenewable energy.While nonrenewable energy has its shortcomings(negative impact on climate change,for example),renewable energy is not enough to address the ever-changing demand for energy.One way to address this need is to become more innovative,use technology more effectively,and be aware of the costs associated with different sources of renewable energy.In the case of nuclear power plants,new innovative centered around small modular reactors(SMRs)of generation 4th of these plants make them safer and less costly to own them as well as to protect them via means of cyber-security against any attack by smart malware.Of course,understanding the risks and how to address them is an integral part of the study.Natural sources of energy,such as wind and solar,are suggesting other innovating technical approaches.In this article,we are studying these factors holistically,and details have been laid out in a book by the authors’second volume of series title as Knowledge Is Power in Four Dimensions under Energy subtitle.
基金supported by the Science and Technology Project of State Grid Corporation(No.5400-202099286A-0-0-00).
文摘The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance the performance of the steady-state adaptive cruise method(SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact boxconstrained economic operating region(EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big-M method to expedite the computation of the EBCEOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency(over twelvefold) are verified through case studies conducted on two test systems..
文摘This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.
文摘The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of RESs and facilitate the integration and management in a decentralized manner. In this paper, a novel framework for optimal energy management of VPP considering key features such as handling uncertainties with RESs, reducing operating costs and regulating system voltage levels is proposed, and a two-stage stochastic simulation is formulated to address the uncertainties of RESs generation and electricity prices. Simulation result show that the framework can benefit from ensuring the energy balance and system security, as well as reducing the operation costs.
基金This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/11742.
文摘A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.