Bridge structure safety monitoring and assessment has been a great concern for the government and the public,and bridge structure safety monitoring and assessment technology has also developed rapidly over the years.I...Bridge structure safety monitoring and assessment has been a great concern for the government and the public,and bridge structure safety monitoring and assessment technology has also developed rapidly over the years.Its goal is to equip relevant organizations and professionals with a deep understanding of the principles and practical applications of these technologies.By doing so,it seeks to facilitate the effective implementation of safety monitoring and assessment practices in bridge management.Ultimately,the aim is to foster the constructive development of road and bridge construction and operational management at a broader level.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural de...This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.展开更多
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a...As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.展开更多
As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial f...As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequentl...The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequently, three levels of the target reliability indices, which are 1.5, 2. 0 and 2. 3, respectively, for those structures on the SLS are suggested based on the Joint Committee on Structural Safety (JCSS) model code, and a new method of calibrating factors of live loads, which is based on the contribution ratio of tensile stresses of reinforcing bars produced by various loads to the maximum crack width of concrete, is proposed. Finally, the calibration of the reliability-based factors of the frequent value and the quasi-permanent value of live loads is conducted by the Joint Committee (JC) method through an actual design, and the indices are proved to be reasonable and the new method is proved to be feasible.展开更多
Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acti...Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake.展开更多
The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strat...The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.展开更多
A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection techn...A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.展开更多
Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the world.As a result,specific infrastructures,notab...Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the world.As a result,specific infrastructures,notably bridges,would experience significant flooding for which they were not intended and would be submerged.The flow field and shear stress distribution around tandem bridge piers under pressurized flow conditions for various bridge deck widths are examined using a series of three-dimensional(3D)simulations.It is indicated that scenarios with a deck width to pier diameter(Ld/p)ratio of 3 experience the highest levels of turbulent disturbance.In addition,maximum velocity and shear stresses occur in cases with Ld/p equal to 6.Results indicate that increasing the number of piers from 1 to 2 and 3 results in the increase of bed shear stress by 24%and 20%respectively.Finally,five machine learning algorithms,including Decision Trees(DT),Feed Forward Neural Networks(FFNN),and three Ensemble models,are implemented to estimate the flow field and the turbulent structure.Results indicated that the highest accuracy for estimation of U,and W,were obtained using AdaBoost ensemble with R2=0.946 and 0.951,respectively.Besides,the Random Forest algorithm outperformed AdaBoost slightly in the estimation of V and turbulent kinetic energy(TKE)with R2=0.894 and 0.951,respectively.展开更多
In this presentation,we have shown the methodology for the structural assessment of bridges that belong to the inventory of cultural heritage.Due to the significant number of“sub-standard”bridges,it is impossible fo...In this presentation,we have shown the methodology for the structural assessment of bridges that belong to the inventory of cultural heritage.Due to the significant number of“sub-standard”bridges,it is impossible for interventions in these bridges to be simultaneous and immediate,so certain criteria and priorities must be established in the ways of interventions for their rehabilitation.Bridges that are most at risk and need to be rehabilitated as soon as possible should be determined,and bridges that can be rehabilitated at a later stage should be identified.The prioritization scheme should include a number of aspects beyond the“pure engineering”ones.Main in this process are:seismicity of the area and the probability of the seismic event,vulnerability of the structure.Different structural systems may be considered to be more vulnerable in the event of an earthquake than others,and therefore may need attention as soon as possible.To make this preliminary assessment,we used the methodology of the US Highway Federation,then we proceed with the in-depth assessment of the carrying capacity using the well-known“time history”or“push over”methods,according to the specific case.As an example for the application of this methodology,we have taken the Dragoti Bridge,a category II cultural monument,the bridge with the largest span of light in Albania of 108 m.展开更多
The bearing capacity testing and evaluation of the existing bridge engineering structure is not only the key to clarify its structural quality and safety performance,but it also can lay a solid foundation for subseque...The bearing capacity testing and evaluation of the existing bridge engineering structure is not only the key to clarify its structural quality and safety performance,but it also can lay a solid foundation for subsequent repairs and maintenance work.To ensure the bearing capacity,durability and reliability of existing bridges,this paper analyzes the importance and methods of testing and evaluation of structural bearing capacity of a bridge.This analysis aims to provide scientific reference for the quality assessment and subsequent repair and maintenance of existing bridge engineering structures.展开更多
This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure (viM), which predicts the limit-state capacities efficiently with multi-intensity measure...This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure (viM), which predicts the limit-state capacities efficiently with multi-intensity measures of seismic event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of different intensity measures, Sa(T1) and Sa(T2) are chosen as viM. Then, the vector-valued fragility functions of different bridge components are developed. Finally, the system-level vulnerability of the bridge based on viM is studied with Duunett- Sobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates that an increment IMs from a scalar IM to viM results in a significant reduction in the dispersion of fragility functions and in the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is validated and the bridge is more vulnerable than any components.展开更多
The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structur...The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.展开更多
A new o-phthalato-bridged oxamide copper(Ⅱ) complex 1, {[Cu2(oxap)](pht). 4H2O}n (oxap=N, N'-bis(2-aminopropyl)oxamide, pht= phthalate dianion), has been prepared and structurally characterized. It crystal...A new o-phthalato-bridged oxamide copper(Ⅱ) complex 1, {[Cu2(oxap)](pht). 4H2O}n (oxap=N, N'-bis(2-aminopropyl)oxamide, pht= phthalate dianion), has been prepared and structurally characterized. It crystallizes in monoclinic, space group C2/c with a=23.424(4), h=7.9696(14), c=15.727(3)A°,β=129.617(2)°, C16H28Cu2N4O10, Mr=563.50, V=2261.6(7) A°, Z=4, Dc=1.655 g/cm^3, μ(MoKα)=1.939 mm^-1, F(000) = 1160, the final R=0.0393 and wR=0.0928 for 1707 observed reflections with I〉2σ(1). Single-crystal X-ray analysis reveals that 1 displays a one-dimensional zigzag chain structure, in which each Cu(oxap) moiety adopting trans-conformation is connected by ,μ1,6-phthalate anion bridges, and these zigzag chains are further linked by another ,μ1,6-phthalate anion bridge to form a 2D sheet structure. The polar guest water molecules reside in the inter-and intrasheets to stabilize the whole crystal structure.展开更多
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method...An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
文摘Bridge structure safety monitoring and assessment has been a great concern for the government and the public,and bridge structure safety monitoring and assessment technology has also developed rapidly over the years.Its goal is to equip relevant organizations and professionals with a deep understanding of the principles and practical applications of these technologies.By doing so,it seeks to facilitate the effective implementation of safety monitoring and assessment practices in bridge management.Ultimately,the aim is to foster the constructive development of road and bridge construction and operational management at a broader level.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
文摘This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.
文摘As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.
文摘As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
基金The National Natural Science Foundation of China (No.50538070).
文摘The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequently, three levels of the target reliability indices, which are 1.5, 2. 0 and 2. 3, respectively, for those structures on the SLS are suggested based on the Joint Committee on Structural Safety (JCSS) model code, and a new method of calibrating factors of live loads, which is based on the contribution ratio of tensile stresses of reinforcing bars produced by various loads to the maximum crack width of concrete, is proposed. Finally, the calibration of the reliability-based factors of the frequent value and the quasi-permanent value of live loads is conducted by the Joint Committee (JC) method through an actual design, and the indices are proved to be reasonable and the new method is proved to be feasible.
文摘Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake.
文摘The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.
文摘A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.
基金supported by the National Natural Science Foundation of China (Grant Nos.52179060 and 51909024).
文摘Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the world.As a result,specific infrastructures,notably bridges,would experience significant flooding for which they were not intended and would be submerged.The flow field and shear stress distribution around tandem bridge piers under pressurized flow conditions for various bridge deck widths are examined using a series of three-dimensional(3D)simulations.It is indicated that scenarios with a deck width to pier diameter(Ld/p)ratio of 3 experience the highest levels of turbulent disturbance.In addition,maximum velocity and shear stresses occur in cases with Ld/p equal to 6.Results indicate that increasing the number of piers from 1 to 2 and 3 results in the increase of bed shear stress by 24%and 20%respectively.Finally,five machine learning algorithms,including Decision Trees(DT),Feed Forward Neural Networks(FFNN),and three Ensemble models,are implemented to estimate the flow field and the turbulent structure.Results indicated that the highest accuracy for estimation of U,and W,were obtained using AdaBoost ensemble with R2=0.946 and 0.951,respectively.Besides,the Random Forest algorithm outperformed AdaBoost slightly in the estimation of V and turbulent kinetic energy(TKE)with R2=0.894 and 0.951,respectively.
文摘In this presentation,we have shown the methodology for the structural assessment of bridges that belong to the inventory of cultural heritage.Due to the significant number of“sub-standard”bridges,it is impossible for interventions in these bridges to be simultaneous and immediate,so certain criteria and priorities must be established in the ways of interventions for their rehabilitation.Bridges that are most at risk and need to be rehabilitated as soon as possible should be determined,and bridges that can be rehabilitated at a later stage should be identified.The prioritization scheme should include a number of aspects beyond the“pure engineering”ones.Main in this process are:seismicity of the area and the probability of the seismic event,vulnerability of the structure.Different structural systems may be considered to be more vulnerable in the event of an earthquake than others,and therefore may need attention as soon as possible.To make this preliminary assessment,we used the methodology of the US Highway Federation,then we proceed with the in-depth assessment of the carrying capacity using the well-known“time history”or“push over”methods,according to the specific case.As an example for the application of this methodology,we have taken the Dragoti Bridge,a category II cultural monument,the bridge with the largest span of light in Albania of 108 m.
文摘The bearing capacity testing and evaluation of the existing bridge engineering structure is not only the key to clarify its structural quality and safety performance,but it also can lay a solid foundation for subsequent repairs and maintenance work.To ensure the bearing capacity,durability and reliability of existing bridges,this paper analyzes the importance and methods of testing and evaluation of structural bearing capacity of a bridge.This analysis aims to provide scientific reference for the quality assessment and subsequent repair and maintenance of existing bridge engineering structures.
基金National Program on Key Basic Research Project of China(973)under Grant No.2011CB013603National Natural Science Foundation of China under Grant Nos.51378341,91315301Tianjin Municipal Natural Science Foundation under Grant No.13JCQNJC07200
文摘This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure (viM), which predicts the limit-state capacities efficiently with multi-intensity measures of seismic event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of different intensity measures, Sa(T1) and Sa(T2) are chosen as viM. Then, the vector-valued fragility functions of different bridge components are developed. Finally, the system-level vulnerability of the bridge based on viM is studied with Duunett- Sobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates that an increment IMs from a scalar IM to viM results in a significant reduction in the dispersion of fragility functions and in the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is validated and the bridge is more vulnerable than any components.
基金Supported by the National Natural Science Foundation of China(50378041)the Program for New Century Excellent Talents of Ministry of Educationof China (2004)
文摘The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.
基金This project was supported by the National Natural Science Foundation of China (No 20331010) and Natural Science Foundation of Tianjing (No. 033602011)
文摘A new o-phthalato-bridged oxamide copper(Ⅱ) complex 1, {[Cu2(oxap)](pht). 4H2O}n (oxap=N, N'-bis(2-aminopropyl)oxamide, pht= phthalate dianion), has been prepared and structurally characterized. It crystallizes in monoclinic, space group C2/c with a=23.424(4), h=7.9696(14), c=15.727(3)A°,β=129.617(2)°, C16H28Cu2N4O10, Mr=563.50, V=2261.6(7) A°, Z=4, Dc=1.655 g/cm^3, μ(MoKα)=1.939 mm^-1, F(000) = 1160, the final R=0.0393 and wR=0.0928 for 1707 observed reflections with I〉2σ(1). Single-crystal X-ray analysis reveals that 1 displays a one-dimensional zigzag chain structure, in which each Cu(oxap) moiety adopting trans-conformation is connected by ,μ1,6-phthalate anion bridges, and these zigzag chains are further linked by another ,μ1,6-phthalate anion bridge to form a 2D sheet structure. The polar guest water molecules reside in the inter-and intrasheets to stabilize the whole crystal structure.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA04Z416)
文摘An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.