期刊文献+
共找到121,259篇文章
< 1 2 250 >
每页显示 20 50 100
Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers
1
作者 Ning Han Xiaolin Zhao Vijay Kumar Thakur 《Nano Materials Science》 EI CAS CSCD 2023年第1期1-14,共14页
Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE f... Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE fiber is smooth and demonstrates no-polar groups.The weak interfacial adhesion between fiber and resin seri-ously restricts the applications of UHMWPE fiber.Therefore,the surface modification treatments of UHMWPE fiber are used to improve the interfacial adhesion strength.The modified method by adding nanomaterials elu-cidates the easy fabrication,advanced equipment and proper technology.Thus,the progress of UHMWPE nanocomposite fibers prepared via adding various nanofillers are reviewed.Meanwhile,the effects of other various methods on surface modification are also reviewed.This work advances the various design strategies about nano technologies on improving interfacial adhesion performance via treatment methodologies. 展开更多
关键词 UHMWPE fiber Surface modification Interfacial adhesion strength NANOCOMPOSITES
下载PDF
Engineered spidroin-derived high-performance fibers for diverse applications 被引量:1
2
作者 Dawen Qin Jingjing Li +2 位作者 Huanrong Li Hongjie Zhang Kai Liu 《Nano Research》 SCIE EI CSCD 2024年第2期492-502,共11页
Spider silks are well known for their exceptional mechanical properties that are tougher than Kevlar and steel.However,the restricted production amounts from their native sources limit applications of spider silks.Ove... Spider silks are well known for their exceptional mechanical properties that are tougher than Kevlar and steel.However,the restricted production amounts from their native sources limit applications of spider silks.Over the decades,there have been significant interests in fabricating man-made silk fibers with comparable performance to natural silks,inspiring many efforts both for biosynthesizing recombinant spider silk proteins(spidroins)in amenable heterologous hosts and biomimetic spinning of artificial spider silks.These strategies provide promising routes to produce high-performance and functionally optimized fibers with diverse applications.Herein,we summarize the hosts that have been applied to produce recombinant spidroins.In addition,the fabrication and mechanical properties of recombinant spidroin fibers and their composite fibers are also introduced.Furthermore,we demonstrate the applications of recombinant spidroin-based fibers.Finally,facing the challenges in biosynthesis,scalable production,and hierarchical assembly of high-performance recombinant spidroins,we give a summary and perspective on future development. 展开更多
关键词 spider silk recombinant spidroin heterologous expression fiber fabrication mechanical property
原文传递
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization
3
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys high-performance Alloy design Machine learning Bayesian optimization
下载PDF
Optimization of the Pretreatment of the Mixture of Cassava Peelings and Pineapple Fibers Using Response Surface Methodology and a Process Simulator for the Bioethanol Production
4
作者 Paul Nestor Djomou Djonga George Elambo Nkeng +2 位作者 Madjoyogo Hervé Sirma Ahmat Tom Thierry Tchamba Tchuidjang 《Energy and Power Engineering》 2024年第2期79-96,共18页
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ... The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure. 展开更多
关键词 BIOETHANOL Cassava Peeling Pineapple fibers Organosolv Process and Optimization
下载PDF
Demineralized Bone Matrix Fibers plus Allograft Bone for Multilevel Posterolateral Spine Fusion: A Game Changer?
5
作者 Bodin Arnaud Barnouin Laurence +2 位作者 Coulomb Remy Haignere Vincent Kouyoumdjian Pascal 《Open Journal of Orthopedics》 2024年第2期105-113,共9页
Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been ... Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender. 展开更多
关键词 Spine Surgery Demineralized Bone fibers Bone Substitutes Retrospective Study
下载PDF
Coaxial Wet Spinning of Boron Nitride Nanosheet‑Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength
6
作者 Wenjiang Lu Qixuan Deng +3 位作者 Minsu Liu Baofu Ding Zhiyuan Xiong Ling Qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期126-138,共13页
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni... Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs. 展开更多
关键词 Boron nitride nanosheets Coaxial fiber Interfacial compression Nanosheet aligning Wearable thermal management
下载PDF
Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries
7
作者 Junbao Kang Nanping Deng +1 位作者 Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期26-42,共17页
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed... Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs. 展开更多
关键词 Composite solide lectrolytes Polymer fibers Solid-state lithium metal batteries Solid-stateel ectrolytes Nanofiber membranes
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
8
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials
9
作者 Youssef Maaloufa Soumia Mounir +8 位作者 Sara Ibnelhaj Fatima Zohra El Wardi Asma Souidi Yakubu Aminu Dodo Malika Atigui Mina Amazal Abelhamid Khabbazi Hassan Demrati Ahmed Aharoune 《Journal of Renewable Materials》 EI CAS 2024年第4期843-867,共25页
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ... The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls. 展开更多
关键词 Biosourced materials fiber banana flexural strength mechanical properties open-air drying PLASTER thermal properties waste management
下载PDF
Analysis of piezoelectric semiconductor fibers under gradient temperature changes
10
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
Optimization Techniques for GPU-Based Parallel Programming Models in High-Performance
11
作者 Shuntao Tang Wei Chen 《信息工程期刊(中英文版)》 2024年第1期7-11,共5页
This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g... This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology. 展开更多
关键词 Optimization Techniques GPU-Based Parallel Programming Models high-performance Computing
下载PDF
Revolutionize fashion with waterless technology for wood-based cellulosic fibers
12
《China Textile》 2024年第3期50-51,共2页
From producing fibers made from wood to becoming a global technology leader:take an inspiring journey in time through 80 years of innovation history.The journey began in 1890,when Emil Hamburger,a paper industrialist ... From producing fibers made from wood to becoming a global technology leader:take an inspiring journey in time through 80 years of innovation history.The journey began in 1890,when Emil Hamburger,a paper industrialist from Lower Austria,acquired the"Starlingermühle"in Lenzing(Austria).Today,the Lenzing Group is an internationally established company with nine production sites and nine sales and planning offices in more than 10 countries. 展开更多
关键词 fibers BECOMING TECHNOLOGY
下载PDF
Preserving glacier mass:Cellulosic LENZING^(TM) fibers provide snow and ice protection solution
13
《China Textile》 2024年第1期10-11,共2页
In field trials on Austrian glaciers,nonwovens made of ce u osic LENZING^(TM) fibers are being used to cover glacier mass.They are showing promising results and offer a sustainable solution for glacier protection.Nonw... In field trials on Austrian glaciers,nonwovens made of ce u osic LENZING^(TM) fibers are being used to cover glacier mass.They are showing promising results and offer a sustainable solution for glacier protection.Nonwovens containing fossilbased synthetic fibers might cause negative environmental consequences such as microplastics on glaciers.Geotextiles with ce u osic LENZINGTMfibers won the prestigious Swiss BIO TOP,an award for wood and material innovations.Geotextiles are already widely used to protect snow and ice on glaciers frommelting. 展开更多
关键词 fibers GLACIER NONWOVEN
下载PDF
Spinning from Nature:Engineered Preparation and Application of High-Performance Bio-Based Fibers 被引量:2
14
作者 Zongpu Xu Mingrui Wu +3 位作者 Qi Ye Dong Chen Kai Liu Hao Bai 《Engineering》 SCIE EI CAS 2022年第7期100-112,共13页
Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinn... Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinning systems that produce such fibers are highly energy efficient,inspiring researchers to mimic these processes to realize robust artificial spinning.Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers.Beyond excellent mechanical properties,bio-based fibers can be functionalized with a series of new features,thus expanding their sophisticated applications in smart textiles,electronic sensors,and biomedical engineering.Here,recent progress in the construction of bio-based fibers is outlined.Various bioinspired spinning methods,strengthening strategies for mechanically strong fibers,and the diverse applications of these fibers are discussed.Moreover,challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented.Finally,a perspective on the development of biological fibers is given. 展开更多
关键词 Bio-based fiber Hierarchical structure Bioinspired spinning Strengthening strategy fiber applications
下载PDF
High-Performance Humidity Sensors Based on Double-Layer ZnO-TiO_(2) Nanofibers via Electrospinning 被引量:1
15
作者 岳学军 洪添胜 +1 位作者 徐兴 李震 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第9期69-72,共4页
ZnO and TiO_(2) nanofibers are synthesized via electrospinning methods and characterized by x−ray diffraction,scanning electron microscopy,and transmission electron microscopy.Humidity sensors with double-layer sensin... ZnO and TiO_(2) nanofibers are synthesized via electrospinning methods and characterized by x−ray diffraction,scanning electron microscopy,and transmission electron microscopy.Humidity sensors with double-layer sensing films are fabricated by spinning the ZnO and TiO_(2) nanofibers on ceramic substrates sequentially.Compared with sensors loading only one type of nanofiber,the double-layer sensors exhibit much better sensing properties.The corresponding impedance changes more than four orders of magnitude within the whole humidity range from 11%to 95%relative humidity,and the response and recovery times are about 11 and 7 s,respectively.Maximum hysteresis is around 1.5%RH,and excellent stability is also observed after 180 days.The humidity sensing mechanism is discussed in terms of the sensor structure.The experimental results provide a possible route for the design and fabrication of high performance humidity sensors based on one-dimensional nanomaterials. 展开更多
关键词 materials fibers SPINNING
下载PDF
Effects of fibers on mechanical properties of high-performance concrete subjected to elevated temperatures
16
作者 董香军 丁一宁 曹凌坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第5期624-630,共7页
The compressive strength and flexural toughness as well as fracture energy of fiber reinforced high-performance concrete (FRHPC) subjected to different high temperatures were studied. The results showed that after exp... The compressive strength and flexural toughness as well as fracture energy of fiber reinforced high-performance concrete (FRHPC) subjected to different high temperatures were studied. The results showed that after exposure at 300, 600 and 900 ℃, the concrete mixes retained 88.1%, 41.3% and 10.2% of the original compressive strength on average, respectively. Steel fiber and polypropylene (PP) fiber were both effective in minimizing the damage effect of high temperatures on the compressive strength. The HPC reinforced with steel fibers showed higher flexural toughness and fracture energy before and after the high-temperature exposures. In comparison, PP fibers had minor beneficial effects on the flexural toughness and fracture energy. The mechanical properties of HPC reinforced with hybrid fibers (steel fiber+PP fiber) were equivalent to or better than those of HPC reinforced with steel fibers alone. In addition, the failure pattern of FRHPC beams changed from pull-out of steel fibers at lower temperatures (20, 300 and 600 ℃) to tensile failure of steel fibers at higher temperature (900 ℃). 展开更多
关键词 纤维增强高性能混泥土 高温 耐压强度 弯曲度
下载PDF
The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice 被引量:4
17
作者 Shanshan Zhang Xinle Xu +1 位作者 Xu Cao Tingting Liu 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期503-511,共9页
In this study,Tremella fuciformis residues as raw material,dietary fibers from tremella were prepared by multiple enzymes.The structure of dietary fibers from tremella was studied by Fourier transform infrared(FTIR),X... In this study,Tremella fuciformis residues as raw material,dietary fibers from tremella were prepared by multiple enzymes.The structure of dietary fibers from tremella was studied by Fourier transform infrared(FTIR),X-ray diffraction analysis(XRD)and scanning electron microscopy(SEM).We analyzed their lipidlowering properties in vitro(water holding,oil holding swelling cholesterol and sodium cholate binding capacitises)and the hypolipidemic effects in mice.The results showed that tremella dietary fibers presented the infrared absorption spectrum characteristics of polysaccharides and the characteristic diffraction peaks of cellulose type I.SEM results indicated that the surface of insoluble dietary fiber(IDF)was porous,while the soluble dietary fiber(SDF)was relatively compact and spongy.IDF exhibited significantly higher water holding,oil holding,and swelling binding capacities than the corresponding SDF.However,SDF exhibited significantly higher viscosity than IDF.The results showed tremella dietary fibers were significant in swelling,water holding and oil holding,cholesterol and bile acids.In vivo experiment results in mice indicated that SDF has the best effect on hyperlipidemia mice than IDF and total dietary fiber(TDF).SDF showed that the total cholesterol(TC),triglyceride(TG)and low density lipoprotein cholesterol(LDL-C)contents dropped by 28.33%,18.65%,and 48.97%,respectively,while high density lipoprotein cholesterol(HDL-C)content increased by 43.80%.Compared with the high-fat control(HCM)group,the arteriosclerosis index(AI)and liver index(LI)of the SDF group mice showed significant differences,indicating that SDF has a good auxiliary effect of lowering blood lipids.The administration of tremella fibers improved the lipid metabolism disorderly situation of hyperlipidemia mice.These results provide a reference for further research and rational development of T.fuciformis. 展开更多
关键词 Tremella fuciformis Dietary fiber Structural characterization Hypolipidemic effects
下载PDF
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire 被引量:3
18
作者 董香军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期743-749,共7页
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC).... Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster. 展开更多
关键词 fiber reinforced high-performance concrete (FRHPC) FIRE SPALLING compressive strength flexural toughness
下载PDF
Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization 被引量:2
19
作者 Zhengchi Yin Xiaoke Wu +5 位作者 Yanwei Yang Huayu Zhang Wangtao Li Ruimin Zhu Qiancheng Zheng Zhengbao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期101-110,共10页
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra... Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports. 展开更多
关键词 Dual-layer PES hollow fiber In-situ crystallization ZIF-8 membrane Gas separation ZNO
下载PDF
Boosting Capacitive Deionization Performance of Commercial Carbon Fibers Cloth via Structural Regulation Based on Catalytic-Etching Effect 被引量:1
20
作者 Chunjie Zhang Dong Wang +5 位作者 Zhen Wang Guangshuai Zhang Zhichao Liu Jie Wu Jin Hu Guangwu Wen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期242-252,共11页
Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconduct... Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconductivity,commercial carbon fibers cloth demonstrates great potential as high-performance electrodes for ions storage.Despite this,its direct application on capacitive deionization is rarely reported in terms of limited pore structure and natural hydrophobicity.Herein,a powerful metal-organic framework-engaged structural regulation strategy is developed to boost the desalination properties of carbon fibers.The obtained porous carbon fibers features hierarchical porous structure and hydrophilic surface providing abundant ions-accessible sites,and continuous graphitized carbon core ensuring rapid electrons transport.The catalytic-etching mechanism involving oxidation of Co and subsequent carbonthermal reduction is proposed and highly relies on annealing temperature and holding time.When directly evaluated as a current collector-free capacitive deionization electrode,the porous carbon fibers demonstrates much superior desalination capability than pristine carbon fibers,and remarkable cyclic stability up to 20 h with negligible degeneration.Particularly,the PCF-1000 showcases the highest areal salt adsorption capacity of 0.037 mg cm^(−2) among carbon microfibers.Moreover,monolithic porous carbon fibers-carbon nanotubes with increased active sites and good structural integrity by in-situ growth of carbon nanotubes are further fabricated to enhance the desalination performance(0.051 mg cm^(−2)).This work demonstrates the great potential of carbon fibers in constructing high-efficient and robust monolithic electrode for capacitive deionization. 展开更多
关键词 capacitive deionization carbon fibers cloth catalytic-etching monolithic electrodes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部