期刊文献+
共找到501,637篇文章
< 1 2 250 >
每页显示 20 50 100
HUSTserver:Implementation for Reliable and High-Performance Network Attached Storage System 被引量:2
1
作者 郭辉 周敬利 余胜生 《Journal of Shanghai University(English Edition)》 CAS 2003年第2期156-162,共7页
Network attached storage (NAS) with the properties of improved scalability, simplified management, low cost and balanced price performance, is desirable for high performance storage systems applied to extensive area... Network attached storage (NAS) with the properties of improved scalability, simplified management, low cost and balanced price performance, is desirable for high performance storage systems applied to extensive areas. Unfortunately, it also has some disadvantages such as increased network workload, and inconvenience in disaster recovery. To overcome these disadvantages, we propose a channel bonding technique and provide hot backup functions in the designed NAS system, named HUSTserver. Channel bonding means merging multiple Ethernet channels into integrated one, and that the data packets can be transferred through any available network channels in a parallel mode. The hot backup function provides automatic data mirroring among servers. In this paper, we first describe the whole system prototype from a software and hardware architecture view. Then, multiple Ethernet and hot backup technologies that distinguish HUSTserver from others are discussed in detail. The findings presented demonstrate that network bandwidth can be scaled by the use of multiple commodity networks. Dual parallel channels of commodity 100 Mbps Ethernet are both necessary and sufficient to support the data rates of multiple concurrent file transfers. And the hot backup function introduced in our system provides high data accessibility. 展开更多
关键词 storage systems network attached storage computer network channel bonding data mirroring.
下载PDF
From 0D to 3D:Hierarchical structured high-performance free-standing silicon anodes based on binder-induced topological network architecture
2
作者 Yihong Tong Ruicheng Cao +4 位作者 Guanghui Xu Yifeng Xia Hongyuan Xu Hong Jin Hui Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期16-23,I0002,共9页
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ... Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges. 展开更多
关键词 Topological network SELF-STABILIZATION FLEXIBILITY FREE-STANDING Silicon anode
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization
3
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys high-performance Alloy design Machine learning Bayesian optimization
下载PDF
Regulating the non-effective carriers transport for high-performance lithium metal batteries
4
作者 Simeng Wang Youchun Yu +2 位作者 Shaotong Fu Hongtao Li Jiajia Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期132-141,共10页
The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development o... The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures. 展开更多
关键词 Functional separators Metal-organic frameworks 3D continuous ion transport networks ELECTROSPINNING Lithium metal batteries
下载PDF
Optimization Techniques for GPU-Based Parallel Programming Models in High-Performance
5
作者 Shuntao Tang Wei Chen 《信息工程期刊(中英文版)》 2024年第1期7-11,共5页
This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g... This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology. 展开更多
关键词 Optimization Techniques GPU-Based Parallel Programming Models high-performance Computing
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:1
6
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
Exploring High-Performance Architecture for Data Center Networks
7
作者 Deshun Li Shaorong Sun +5 位作者 Qisen Wu Shuhua Weng Yuyin Tan Jiangyuan Yao Xiangdang Huang Xingcan Cao 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期433-443,共11页
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin... As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks. 展开更多
关键词 Data center networks dual-port server clos structure highperformance
下载PDF
Expansion Performance and Microstructure of High-performance Concrete using Differently Scaled MgO Agents and Mineral Powder
8
作者 TIAN Changjin WANG Youzhi +1 位作者 QIU Kai YANG Qilin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1335-1347,共13页
To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly ob... To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly observed in this study.Secondly,SEM,XRD,and TG-DSC microscopic tests were conducted to reveal the effects of the active mineral-powder admixture on the hydration degree and expansion performance of MgO and nano-MgO in HPC.Our experimental results successfully verified our hypothesis,which indicated that the expansion performance of macro-MgO and nano-MgO was indeed depressed by the addition of active mineral power admixtures,even though the mechanical property of concrete composites was effectively improved.Furthermore,the hydration test also demonstrated the negative interference on the mineral powders,which was induced by the expansion agents.It is found the amounts of hydrates tend to decrease because the mineral powder ratio reaches and exceeds 40%.Moreover,it is also concluded the effect of expansion agents is governed by the alkalinity cement paste,especially for the nano-MgO.In other words,the expansion performance of nano-MgO will vary more obviously with the hydration process,than MgO.The results of this study provide that effective experimental and theoretical data support the hydration-inhibition mechanism of magnesium expansive agents. 展开更多
关键词 MGO Nano-MgO mineral powders high-performance concrete expansive agents MICROSTRUCTURES
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:1
9
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Biomass-Derived Nitrogen and Sulfur Co-Doped 3D Carbon Networks with Interconnected Meso-Microporous Structure for High-Performance Supercapacitors 被引量:1
10
作者 Zhu Jiajia Hao Xiaodong +3 位作者 Wang Jie Guo Hongshuai Dou Hui Zhang Xiaogang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期590-602,共13页
Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus en... Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures. 展开更多
关键词 bacterial cellulose 3D carbon networks FREE-STANDING N S-codoping SUPERCAPACITORS
下载PDF
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:1
11
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
ZTE Cloud Radio Solution to Usher in New Era of High-Performance LTE Networks
12
作者 ZTE Corporation 《ZTE Communications》 2013年第2期37-37,共1页
ZTE showcased its innovative cloud radio solution for 4G network optimization at the Mobile Asia Expo in Shanghai.
关键词 LTE RADIO ZTE Cloud Radio Solution to Usher in New Era of high-performance LTE networks
下载PDF
Influencer identification of dynamical networks based on an information entropy dimension reduction method
13
作者 段东立 纪思源 袁紫薇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期375-384,共10页
Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,... Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers. 展开更多
关键词 dynamical networks network influencer low-dimensional dynamics network disintegration
下载PDF
A multilayer network diffusion-based model for reviewer recommendation
14
作者 黄羿炜 徐舒琪 +1 位作者 蔡世民 吕琳媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期700-717,共18页
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d... With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes. 展开更多
关键词 reviewer recommendation multilayer network network diffusion model recommender systems complex networks
下载PDF
Multicomponent mixed metallic hierarchical ZnNi@Ni@PEDOT arrayed structures as advanced electrode for high-performance hybrid electrochemical cells
15
作者 Anki Reddy Mule Bhimanaboina Ramulu +1 位作者 Shaik Junied Arbaz Jae Su Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期448-458,共11页
Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barri... Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barrier to utilizing hydroxides/hydroxyl carbonates is their poor electrochemical performance,resulting from the significantly poor electrical conductivity and sluggish charge storage kinetics.Hence,a multilayered structural approach is primarily and successfully used to construct electrodes as one of the efficient approaches.This method has made it possible to develop well-ordered nanostructured electrodes with good performance by taking advantage of tunable approach parameters.Herein,we report the design of multilayered heterostructure porous zinc-nickel nanosheets@nickel flakes hydroxyl carbonates and/or hydroxides integrated with conductive PEDOT fibrous network(i.e.,ZnNi@Ni@PEDOT) via facile synthesis methods.The combined hybrid electrode acquires the features of high electrical conductivity from one part and various valance states from another one to develop a well-organized nanosheet/flake/fibrous-like heterostructure with decent mechanical strength,creating robust synergistic results.Thus,the designed binder-free ZnNi@Ni@PEDOT electrode delivers a high areal capacity value of 1050.1 μA h cm^(-2) at 3 mA cm^(-2) with good cycling durability,significantly outperforming other individual electrodes.Moreover,its feasibility is also tested by constructing a hybrid electrochemical cell(HEC).The assembled HEC exhibits a high areal capacity value of 783.8 μA h cm^(-2) at5 mA cm^(-2).and even at a high current density of 100 mA cm^(-2)(484.6 μA h cm^(-2)),the device still retains a rate capability of 61,82%,Also,the HEC shows maximum energy and power densities of0.595 mW h cm^(-2) and 77.23 mW cm^(-2),respectively,along with good cycling stability.The obtained energy storage capabilities effectively power various electronic components.These results provide a viable and practical way to construct a positive electrode with innovative heterostructures for highperformance energy storage devices and profoundly influence the development of electrochemical SCs. 展开更多
关键词 Mixed metal Hydroxyl carbonates/hydroxides Layer-by-layer design Fibrous PEDOT network Electrochemical performance Hybrid electrochemical cell
下载PDF
Source localization in signed networks with effective distance
16
作者 马志伟 孙蕾 +2 位作者 丁智国 黄宜真 胡兆龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期577-585,共9页
While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization ... While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage. 展开更多
关键词 complex networks signed networks source localization effective distance
下载PDF
Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries 被引量:1
17
作者 Leping Dang Jiawei He Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2022年第2期132-143,共12页
Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.How... Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.However,its large volume expansion and contraction during sodiation/desodiation lead to poor cycling stability.In this work,a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes(BP/G/CNTs)composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process.The unique structure can mitigate the eff ect of volume changes and provide additional electron conduction pathways during cycles.Furthermore,the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon,thereby improving the cycling and rate performance.As a result,the BP/G/CNTs composite delivers a high initial Coulombic efficiency(89.6%)and a high specific capacity for SIBs(1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g).Based on these results,the integrated strategy of one-and two-dimensional carbon materials can guide other anode materials for SIBs. 展开更多
关键词 Sodium-ion batteries Anode material Black phosphorus Ball milling Carbon conductive network
下载PDF
Impact of different interaction behavior on epidemic spreading in time-dependent social networks
18
作者 黄帅 陈杰 +2 位作者 李梦玉 徐元昊 胡茂彬 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期190-195,共6页
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi... We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy. 展开更多
关键词 epidemic transmission complex network time-dependent networks social interaction
下载PDF
Reliability Assessment of a New General Matching Composed Network
19
作者 Zhengyuan Liang Junbin Liang Guoxuan Zhong 《China Communications》 SCIE CSCD 2024年第2期245-257,共13页
The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an inc... The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an increasingly important research issue. However, at present, the reliability assessment of many interconnected networks is not yet accurate,which inevitably weakens their fault tolerance and diagnostic capabilities. To improve network reliability,researchers have proposed various methods and strategies for precise assessment. This paper introduces a novel family of interconnection networks called general matching composed networks(gMCNs), which is based on the common characteristics of network topology structure. After analyzing the topological properties of gMCNs, we establish a relationship between super connectivity and conditional diagnosability of gMCNs. Furthermore, we assess the reliability of g MCNs, and determine the conditional diagnosability of many interconnection networks. 展开更多
关键词 conditional diagnosability interconnection networks network reliability super connectivity
下载PDF
Innovation and Firm Co-ownership Network in China’s Electric Vehicle Industry
20
作者 JIN Zerun ZHU Shengjun 《Chinese Geographical Science》 SCIE CSCD 2024年第2期195-209,共15页
Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The cur... Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction. 展开更多
关键词 firm co-ownership intra-city network inter-city network technological innovation electric vehicle China
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部