The mix design method of asphalt rubber open-graded friction course (AR-OGFC) by the Marshall test and key technologies of AR-OGFC overlay are studied. Based on the draindown test, the stripping test and the Marshal...The mix design method of asphalt rubber open-graded friction course (AR-OGFC) by the Marshall test and key technologies of AR-OGFC overlay are studied. Based on the draindown test, the stripping test and the Marshall test by different beating times, the asphalt content estimating method and Marshall beat criterion are studied. It is found that the asphalt content of AR-OGFC can be estimated by the formula of Arizona, and the proper Marshall test criterion for AR-OGFC is 50 beats on both sides. By analyzing the influence of gradation on OGFC performance, the gradation of AR-OGFC is recommended, and the amount of aggregate passing 4. 75 mm should be minimized for AR-OGFC. Through investigation of AR-OGFC overlay projects, key technologies such as the treatment of underlying pavement and the selection of tack coat are advanced, and modified emulsified asphalt should be used in AR-OGFC overlay tack coat.展开更多
A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are...A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are evenly distributed in the asphalt.Shear rate sweep and shear-temperature sweep tests on the crumb rubber modified asphalt at-20-80 ℃ using a dynamic shear rheology(DSR) instrument,were carried out.The tests show that the complex modulus decreases with increasing temperature;at equivalent temperature,higher load frequencies lead to a larger complex modulus,and this value increasingly decreases as the temperature increases;the phase angle increases with temperature and decreases as the load frequency increases.It can be concluded that the rutting resistance limiting temperature of crumb rubber modified asphalt is 78 ℃,and the anti-fatigue limiting temperature is 16 ℃,which shows that the asphalt has preferable rutting resistance characteristics at high temperature,as well as anti-fatigue characteristics.In addition,the complex modulus master curve at different temperatures was plotted according to the time temperature equivalence principle,which allows the study of the dynamic state behavior of crumb rubber modified asphalt at a wide range of load frequency.展开更多
Recycling end-of-life tire rubber as asphalt modifier is known as a sustainable paving technology with merits including enhanced pavement durability,waste tire consumption and noise reduction.However,the criticisms on...Recycling end-of-life tire rubber as asphalt modifier is known as a sustainable paving technology with merits including enhanced pavement durability,waste tire consumption and noise reduction.However,the criticisms on the high construction emissions of asphalt rubber(AR)have limited its application.Warm mix asphalt(WMA)effectively reduces the mixing and compaction temperatures of conventional hot mix asphalt mixtures.The combination of AR and WMA,called warm asphalt rubber(WAR),is a promising paving material which achieves pavement sustainability from principles to practices.Many studies have demonstrated that WMA technologies work effectively with AR pavement in different ways,alleviating the concerns of potential higher emissions of AR by decreasing mixing and paving temperatures.A comprehensive literature review about WAR brings a better understanding of this promising paving technology.The findings of 165 publications were summarized in this review.It summarized the recent developments of WAR in various aspects,including rheological properties,mix design,mixture mechanical performance,field application,construction emission,and asphalt-rubber-WMA additive interaction.It is expected that this review is able to provide extensive information to explore further research development and application of WAR.展开更多
To investigate the mechanism of asphalt modification by crumb rubber,the interactions between FCC slurry and rubber particles were evaluated at different temperatures and time.The rules of the change in mass of SARA c...To investigate the mechanism of asphalt modification by crumb rubber,the interactions between FCC slurry and rubber particles were evaluated at different temperatures and time.The rules of the change in mass of SARA composition in FCC slurry were obtained before and after its interaction with rubber particles,which showed that crumb rubber not only absorbed saturates and aromatics but also resins.Asphaltenes promoted the desulfurization or degradation of crumb rubber during the interaction between asphalt and crumb rubber.展开更多
The use of steel slag,which is a by-product of the steel manufacture,in the construction of asphalt pavement would contribute to waste reduction and environment protection.Using rubber asphalt at the same time can imp...The use of steel slag,which is a by-product of the steel manufacture,in the construction of asphalt pavement would contribute to waste reduction and environment protection.Using rubber asphalt at the same time can improve the performance of asphalt mixture.This study investigates the influence of steel slag content on the road performance,thermal conductivity and outdoor temperature distribution of steel slag rubber asphalt mixtures(SSRAM),and calculates the cumulative stress in surface layer.At a certain range of concentration,the steel slag additive improved the deformation resistance and low-temperature cracking resistance of the mixtures.The SSRAM with 40%steel slag content has the best deformation resistance while SSRAM with 60%steel slag content performed well in low-temperature cracking resistance.The thermal conductivity of the SSRAM with different steel slag content(0%,20%,40%,60%,80%,and 100%)was 1.994,2.188,2.239,2.255,2.288,and 2.295 W/(m·K),respectively.Measurements of the outdoor temperature distribution further confirmed that steel slag increased the thermal conductivity of the mixtures,thereby increasing the cumulative temperature difference between the top and bottom layers.The temperature stress and temperature-stress ratio of the SSRAM with 40%steel slag were 0.43 MPa and 0.24,while the SSRAM with 100%steel slag were 0.58 MPa and 0.36.The stress and stress ratio were much higher in the SSRAM with 100%steel slag than in the specimen with 40%steel slag.Accordingly,the maximum accumulated temperature stress aggrandized and caused early temperature cracks in the surface layer.The optimum content of steel slag was 40%.展开更多
Through scanning electron microscope (SEM), spectral analysis, and component analysis tests, the interaction theory between asphalt and rubber was discussed. It is concluded that rubber powder become soft and bond t...Through scanning electron microscope (SEM), spectral analysis, and component analysis tests, the interaction theory between asphalt and rubber was discussed. It is concluded that rubber powder become soft and bond together with each other after being mixed with asphalt. The asphalt changes from a smooth homogeneous matter to a continuous mixing system which is composed of rubber powder and asphalt. The interaction is mainly physical diffusion, but there are some chemical reactions in the process, especially at long reaction time.展开更多
Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution...Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at -10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.展开更多
Crumb rubber powder is a successfully used renewable material obtained from waste tire rubber,which has been incorporated into paving asphalt since the 1930s due to its good resistance to deformation and fatigue as we...Crumb rubber powder is a successfully used renewable material obtained from waste tire rubber,which has been incorporated into paving asphalt since the 1930s due to its good resistance to deformation and fatigue as well as its eco-friendly performance.In this study,carbon nanotubes and nano silica were incorporated into the terminal blend crumb rubber modified asphalt technology to remedy the issues of excessive desulfurization and degradation of ground tyre rubber with this technology.The mechanism behind the high temperature delayed elastic properties of the crumb rubber-nano-asphalt hybrids was experimentally investigated based on discrete relaxation spectrum.Development of the discrete relaxation spectra was accomplished by fitting on the 60℃ storage modulus data tested by the dynamic shear rheometer using the generalized Maxwell model.Subsequently,the feasibility of characterizing delayed asphalt elasticity using main relaxation time was verified by test results from the 60℃ creep and recovery test.Results indicated that the crumb rubber-nano-asphalt hybrids exhibited arrheodictic behavior and the asphalt elasticity was strengthened by two nano agents.Moreover,the elasticity reinforcement with carbon nanotubes was greater than with nano silica.Additionally,a good correlation was observed between the 60℃ zero shear viscosity and main relaxation time,and greater 60℃ zero shear viscosity was correlated to longer main relaxation times.Furthermore,longer main relaxation time of the asphalt was related to greater average recovery rate in the creep and recovery test.This research is expected to shed some light on the mechanism behind time-dependent elasticity of crumb rubber modified asphalt from the perspective of polymer physics.展开更多
In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT conte...In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.展开更多
Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measu...Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measurements, such as, the optimal adjustment of gradation, technique of composite modification, and control of compaction were investigated. An optimal adjustment of aggregate gradation based on stone matrix asphalt improves the high-temperature stability of the asphaltrubber mixture significantly. Through composite modifi- cation, the effect of asphalt-rubber modification was enhanced, and the dynamic stability and relative defor- mation indices of the asphalt-rubber mixture were improved significantly. Furthermore, compaction parame- ters had a significant influence on the high-temperature stability of the asphalt-rubber mixture. The rolling times for compacting the asphalt-rubber mixture should be controlled to within 18-20 round-trips at a molding temperature at 180℃; if the rolling time is a 12 round-trip, the compaction temperature of the asphalt-rubber mixture should be controlled between 180 and 190℃.展开更多
The research on asphalt performance mainly focused on the macro performance and micro mechanism.Mesoscopic analysis was introduced to study the effect of rubber powder movement on asphalt rubber properties.After the p...The research on asphalt performance mainly focused on the macro performance and micro mechanism.Mesoscopic analysis was introduced to study the effect of rubber powder movement on asphalt rubber properties.After the preparation parameters and the preparation process of asphalt rubber were determined,the modification mechanism and rheological properties were analyzed which revealed the compatible stability mechanism.Then,the analysis model of asphalt rubber was established to focus on simulating the effect of rubber powder and the spatial movement on its mechanical properties.The experimental results show that rubber powder can make the asphalt rubber bear more uniform stress distribution and enhance the ability to resist deformation.Meanwhile,the rotational motion and final distribution of rubber powder have an obvious impact on the mechanical properties of asphalt rubber.In the selected feature points,the average stress of rubber powder at 0°space angle is only 34.1%of that at90°space angle.When the rubber powders are all in parallel in the ideal state,it enhances the mechanical properties the most.This study supplements the“mesoscopic”scale between macro and micro research.The relationship between micro mechanism and macro properties of asphalt rubber will be established from the mesoscopic perspective.It is also an effort to realize the effective correlation from micro,mesoscopic to macro in asphalt.展开更多
To evaluate the effects of Crumb Rubber Modifiers (CRMS) on basic engineering properties (i.e. Marshall, tensile strength, and compressive strength) of stone matrix asphalt mixtures, the ASTM testing and procedures we...To evaluate the effects of Crumb Rubber Modifiers (CRMS) on basic engineering properties (i.e. Marshall, tensile strength, and compressive strength) of stone matrix asphalt mixtures, the ASTM testing and procedures were employed. Results of the evaluation were used to quantify the effect of CRM source and CRM content on engineering properties at testing temperatures of 25 ℃ and 60 ℃. Statistical models were developed, which represent the nature of effects on performance-related properties of stone matrix asphalt mixtures.展开更多
In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance...In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.展开更多
The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation res...The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.展开更多
The research considered urgent ecological reasons linked to environment such as worn tires, the waste tire rubber's powder was collected from the tire cars repair shops (passed from the sieve No 18 μm), and used t...The research considered urgent ecological reasons linked to environment such as worn tires, the waste tire rubber's powder was collected from the tire cars repair shops (passed from the sieve No 18 μm), and used to improve the asphalt concrete properties. Raw materials used were prepared and tested. Varies of asphalt concrete mixtures were prepared with different ratios of bitumen (5, 5.5, 6, 6.5, 7% % of concrete weight). The Marshall mix design method was used to determine optimum conditions for bitumen in asphalt concrete with specific weight, stability and flow Test, the optimum amount of bitumen was 6.1% of whole asphalt concrete. The different percentages of waste tire rubber powder (0.0, 0.05, 0.10, 0.15% of bitumen weight) were added in optimum bitumen of asphalt concretes, then specific weight and Marshall test were evaluated. These asphalt-rubber mixtures were found to act quite differently from traditional, unmodified asphalt mixtures. However, these results indicate that improved pavement performance can be achieved with asphalt-rubber binder.展开更多
The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface lay...The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface layer materials. In this paper, a new kind of cement asphalt emulsion composite-rubberized asphalt emulsion modified Portland cement concrete (RACC) was proposed, which was formed by dispersing rubberized aSPhalt emulsion coated coarse aggregates into cement mortar matrix. In order to evaluate systematically the performance of RACC, laboratory tests with nearly one thousand SPecimen were conducted for resilient modulus, fatigue properties, ultimate ban and length,abrasion, temperature contraction, and dry shrinkage. The experimental results show that the problems existed in C-ETM have to a great extends been solved by RACc. To verify the field performance and inquire into paving technology, teSt road appearsatlsfactory it is concluded that when thed ape surface laycr of semi-rigid base course, RACC is more for surface layer material than both Portland cement concrete(PCC) and asphalt concrete(AC)展开更多
This paper presents the results of an experimental survey on the potential application of DARC (dry asphalt rubber concrete) in rail superstructure, within sub-ballast layers by measuring its damping and mechanical ...This paper presents the results of an experimental survey on the potential application of DARC (dry asphalt rubber concrete) in rail superstructure, within sub-ballast layers by measuring its damping and mechanical properties. Based on the environmental friendly point of view the DARC has the significant advantage as the backfill material of sub-ballast layer because the rubber comes from the waste tires of truck and its usage can results a significant recycling of non-biodegradable wastes. After a preliminary mix-design of several DARCs, with different rubber content that confirmed by using the Marshall test, the stiffness modulus and damping ratio both of a standard bituminous mixture and of dry asphalt rubber concrete with a rubber content equal to 1.5% were determined using the four points bending device. The experimental results were compared and a numerical analysis by means of a 2D lumped mass model was developed in order to evaluate the different performance within the rail superstructure in terms both of the deflection and of the pressure on sub-grade. Both the results on the mechanical and dissipative properties of the DARC and the mechanical behavior of the correlate rail superstructure encourage the authors to continue the research on the application of such material for sub-ballast layers.展开更多
Waste rubber-modified asphalt has good anti-aging properties and can significantly improve the service life of asphalt pavements. For domestic and foreign scholars of rubber modified asphalt thermal oxygen aging, phot...Waste rubber-modified asphalt has good anti-aging properties and can significantly improve the service life of asphalt pavements. For domestic and foreign scholars of rubber modified asphalt thermal oxygen aging, photo-oxidative aging and water aging some behavioural research, and rubber asphalt aging after the characteristics of the research progress are reviewed. Especially rubber-modified asphalt after light, water and other multi-factor agingsituations, the aging situation is more serious, for rubber-modified asphalt mixture aging, rubber asphalt anti-aging process research and analysis means are still very few, the future research must have more thinking.展开更多
Breaking waste tires into crumb and adding it to asphalt as modifier to prepare asphalt rubber (AR) is an effective method to solve the waste tire problem and improve the performance of matrix asphalt. The modified as...Breaking waste tires into crumb and adding it to asphalt as modifier to prepare asphalt rubber (AR) is an effective method to solve the waste tire problem and improve the performance of matrix asphalt. The modified asphalt has better high and low temperature performance. However, the segregation of the crumb rubber modifier (CRM) causes storage instability of the AR. At present, studies have been conducted that improving the solubility of the CRM or adding some macromolecular polymer can improve the storage stability of the AR. However, the structure and polarity of the CRM surface are rarely explored for its correlation with the storage stability of AR. In this paper, the surface structure and polarity of the CRMs was changed by four different reagents, and the properties of the ARs prepared by the CRM were measured to analyze the adhesion between the CRM and the asphalt. It is concluded that the CRM with rough porous and non-polar surface has higher storage stability due to the better interfacial adhesion, which provides a research direction for improving the storage stability of rubber asphalt.展开更多
Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to des...Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.展开更多
文摘The mix design method of asphalt rubber open-graded friction course (AR-OGFC) by the Marshall test and key technologies of AR-OGFC overlay are studied. Based on the draindown test, the stripping test and the Marshall test by different beating times, the asphalt content estimating method and Marshall beat criterion are studied. It is found that the asphalt content of AR-OGFC can be estimated by the formula of Arizona, and the proper Marshall test criterion for AR-OGFC is 50 beats on both sides. By analyzing the influence of gradation on OGFC performance, the gradation of AR-OGFC is recommended, and the amount of aggregate passing 4. 75 mm should be minimized for AR-OGFC. Through investigation of AR-OGFC overlay projects, key technologies such as the treatment of underlying pavement and the selection of tack coat are advanced, and modified emulsified asphalt should be used in AR-OGFC overlay tack coat.
基金Funded by the Communication Science and Technology Foundation of Inner Mongolia (NJ-2005-25)
文摘A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are evenly distributed in the asphalt.Shear rate sweep and shear-temperature sweep tests on the crumb rubber modified asphalt at-20-80 ℃ using a dynamic shear rheology(DSR) instrument,were carried out.The tests show that the complex modulus decreases with increasing temperature;at equivalent temperature,higher load frequencies lead to a larger complex modulus,and this value increasingly decreases as the temperature increases;the phase angle increases with temperature and decreases as the load frequency increases.It can be concluded that the rutting resistance limiting temperature of crumb rubber modified asphalt is 78 ℃,and the anti-fatigue limiting temperature is 16 ℃,which shows that the asphalt has preferable rutting resistance characteristics at high temperature,as well as anti-fatigue characteristics.In addition,the complex modulus master curve at different temperatures was plotted according to the time temperature equivalence principle,which allows the study of the dynamic state behavior of crumb rubber modified asphalt at a wide range of load frequency.
基金Project(51808228)supported by the National Natural Science Foundation of ChinaProject(OE514/10-1)supported by the German Research Foundation。
文摘Recycling end-of-life tire rubber as asphalt modifier is known as a sustainable paving technology with merits including enhanced pavement durability,waste tire consumption and noise reduction.However,the criticisms on the high construction emissions of asphalt rubber(AR)have limited its application.Warm mix asphalt(WMA)effectively reduces the mixing and compaction temperatures of conventional hot mix asphalt mixtures.The combination of AR and WMA,called warm asphalt rubber(WAR),is a promising paving material which achieves pavement sustainability from principles to practices.Many studies have demonstrated that WMA technologies work effectively with AR pavement in different ways,alleviating the concerns of potential higher emissions of AR by decreasing mixing and paving temperatures.A comprehensive literature review about WAR brings a better understanding of this promising paving technology.The findings of 165 publications were summarized in this review.It summarized the recent developments of WAR in various aspects,including rheological properties,mix design,mixture mechanical performance,field application,construction emission,and asphalt-rubber-WMA additive interaction.It is expected that this review is able to provide extensive information to explore further research development and application of WAR.
文摘To investigate the mechanism of asphalt modification by crumb rubber,the interactions between FCC slurry and rubber particles were evaluated at different temperatures and time.The rules of the change in mass of SARA composition in FCC slurry were obtained before and after its interaction with rubber particles,which showed that crumb rubber not only absorbed saturates and aromatics but also resins.Asphaltenes promoted the desulfurization or degradation of crumb rubber during the interaction between asphalt and crumb rubber.
基金This research was funded by the Department of Transportation of Hebei Province(Grant No.TH1-202019).
文摘The use of steel slag,which is a by-product of the steel manufacture,in the construction of asphalt pavement would contribute to waste reduction and environment protection.Using rubber asphalt at the same time can improve the performance of asphalt mixture.This study investigates the influence of steel slag content on the road performance,thermal conductivity and outdoor temperature distribution of steel slag rubber asphalt mixtures(SSRAM),and calculates the cumulative stress in surface layer.At a certain range of concentration,the steel slag additive improved the deformation resistance and low-temperature cracking resistance of the mixtures.The SSRAM with 40%steel slag content has the best deformation resistance while SSRAM with 60%steel slag content performed well in low-temperature cracking resistance.The thermal conductivity of the SSRAM with different steel slag content(0%,20%,40%,60%,80%,and 100%)was 1.994,2.188,2.239,2.255,2.288,and 2.295 W/(m·K),respectively.Measurements of the outdoor temperature distribution further confirmed that steel slag increased the thermal conductivity of the mixtures,thereby increasing the cumulative temperature difference between the top and bottom layers.The temperature stress and temperature-stress ratio of the SSRAM with 40%steel slag were 0.43 MPa and 0.24,while the SSRAM with 100%steel slag were 0.58 MPa and 0.36.The stress and stress ratio were much higher in the SSRAM with 100%steel slag than in the specimen with 40%steel slag.Accordingly,the maximum accumulated temperature stress aggrandized and caused early temperature cracks in the surface layer.The optimum content of steel slag was 40%.
基金Funded by Jiangsu Transportation Research Program(No. 05Y07)
文摘Through scanning electron microscope (SEM), spectral analysis, and component analysis tests, the interaction theory between asphalt and rubber was discussed. It is concluded that rubber powder become soft and bond together with each other after being mixed with asphalt. The asphalt changes from a smooth homogeneous matter to a continuous mixing system which is composed of rubber powder and asphalt. The interaction is mainly physical diffusion, but there are some chemical reactions in the process, especially at long reaction time.
基金Funded by Inner Mongolia Communication Technology Project (No.NJ-2005-25)
文摘Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at -10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.
基金This research was supported by the National Natural Science Foundation of China(Grant No.52078051)the Transportation Department of Shandong Province(Grant No.Lujiaoke[2017]18)+3 种基金the Technology Innovation Project of Shandong Department of Industry and Information(Grant No.Lugongxinji[2020]8)the Education Department of Shaanxi Provincial Government(Grant Nos.SGH18V027,19GG011)the Shaanxi Association of Higher Education(Grant No.XGH20379)the Shaanxi College of Communication Technology(Grant No.YJ18008).
文摘Crumb rubber powder is a successfully used renewable material obtained from waste tire rubber,which has been incorporated into paving asphalt since the 1930s due to its good resistance to deformation and fatigue as well as its eco-friendly performance.In this study,carbon nanotubes and nano silica were incorporated into the terminal blend crumb rubber modified asphalt technology to remedy the issues of excessive desulfurization and degradation of ground tyre rubber with this technology.The mechanism behind the high temperature delayed elastic properties of the crumb rubber-nano-asphalt hybrids was experimentally investigated based on discrete relaxation spectrum.Development of the discrete relaxation spectra was accomplished by fitting on the 60℃ storage modulus data tested by the dynamic shear rheometer using the generalized Maxwell model.Subsequently,the feasibility of characterizing delayed asphalt elasticity using main relaxation time was verified by test results from the 60℃ creep and recovery test.Results indicated that the crumb rubber-nano-asphalt hybrids exhibited arrheodictic behavior and the asphalt elasticity was strengthened by two nano agents.Moreover,the elasticity reinforcement with carbon nanotubes was greater than with nano silica.Additionally,a good correlation was observed between the 60℃ zero shear viscosity and main relaxation time,and greater 60℃ zero shear viscosity was correlated to longer main relaxation times.Furthermore,longer main relaxation time of the asphalt was related to greater average recovery rate in the creep and recovery test.This research is expected to shed some light on the mechanism behind time-dependent elasticity of crumb rubber modified asphalt from the perspective of polymer physics.
基金Projects(51838001,51878070,51908069)supported by the National Natural Science Foundation of China。
文摘In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.
文摘Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measurements, such as, the optimal adjustment of gradation, technique of composite modification, and control of compaction were investigated. An optimal adjustment of aggregate gradation based on stone matrix asphalt improves the high-temperature stability of the asphaltrubber mixture significantly. Through composite modifi- cation, the effect of asphalt-rubber modification was enhanced, and the dynamic stability and relative defor- mation indices of the asphalt-rubber mixture were improved significantly. Furthermore, compaction parame- ters had a significant influence on the high-temperature stability of the asphalt-rubber mixture. The rolling times for compacting the asphalt-rubber mixture should be controlled to within 18-20 round-trips at a molding temperature at 180℃; if the rolling time is a 12 round-trip, the compaction temperature of the asphalt-rubber mixture should be controlled between 180 and 190℃.
基金Funded by the Key Research and Development Projects in Shaanxi Province (2022SF-328)the Science and Technology Project of Henan Department of Transportation (2020J-2-3)the Science and Technology Project of Shaanxi Department of Transportation (Nos.19-10K and 19-28K)。
文摘The research on asphalt performance mainly focused on the macro performance and micro mechanism.Mesoscopic analysis was introduced to study the effect of rubber powder movement on asphalt rubber properties.After the preparation parameters and the preparation process of asphalt rubber were determined,the modification mechanism and rheological properties were analyzed which revealed the compatible stability mechanism.Then,the analysis model of asphalt rubber was established to focus on simulating the effect of rubber powder and the spatial movement on its mechanical properties.The experimental results show that rubber powder can make the asphalt rubber bear more uniform stress distribution and enhance the ability to resist deformation.Meanwhile,the rotational motion and final distribution of rubber powder have an obvious impact on the mechanical properties of asphalt rubber.In the selected feature points,the average stress of rubber powder at 0°space angle is only 34.1%of that at90°space angle.When the rubber powders are all in parallel in the ideal state,it enhances the mechanical properties the most.This study supplements the“mesoscopic”scale between macro and micro research.The relationship between micro mechanism and macro properties of asphalt rubber will be established from the mesoscopic perspective.It is also an effort to realize the effective correlation from micro,mesoscopic to macro in asphalt.
文摘To evaluate the effects of Crumb Rubber Modifiers (CRMS) on basic engineering properties (i.e. Marshall, tensile strength, and compressive strength) of stone matrix asphalt mixtures, the ASTM testing and procedures were employed. Results of the evaluation were used to quantify the effect of CRM source and CRM content on engineering properties at testing temperatures of 25 ℃ and 60 ℃. Statistical models were developed, which represent the nature of effects on performance-related properties of stone matrix asphalt mixtures.
文摘In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.
基金the support from the National Natural Science Foundation of China (Grant No.52078051)the Technology Innovation Project of Department of Industry and Information Technology of Shandong Province (Grant No.Lugongxinji (2020) 8)+2 种基金the Transportation Department of Shandong Province (Grant No.Lujiaokeji (2017) 28)the Traffic Science and Technology Project of Xixian New District Management Committee of Shaanxi Province (2017 44)the Zhuhai Transportation Group Co.Ltd.(JT-HG-2020-21)
文摘The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.
文摘The research considered urgent ecological reasons linked to environment such as worn tires, the waste tire rubber's powder was collected from the tire cars repair shops (passed from the sieve No 18 μm), and used to improve the asphalt concrete properties. Raw materials used were prepared and tested. Varies of asphalt concrete mixtures were prepared with different ratios of bitumen (5, 5.5, 6, 6.5, 7% % of concrete weight). The Marshall mix design method was used to determine optimum conditions for bitumen in asphalt concrete with specific weight, stability and flow Test, the optimum amount of bitumen was 6.1% of whole asphalt concrete. The different percentages of waste tire rubber powder (0.0, 0.05, 0.10, 0.15% of bitumen weight) were added in optimum bitumen of asphalt concretes, then specific weight and Marshall test were evaluated. These asphalt-rubber mixtures were found to act quite differently from traditional, unmodified asphalt mixtures. However, these results indicate that improved pavement performance can be achieved with asphalt-rubber binder.
文摘The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface layer materials. In this paper, a new kind of cement asphalt emulsion composite-rubberized asphalt emulsion modified Portland cement concrete (RACC) was proposed, which was formed by dispersing rubberized aSPhalt emulsion coated coarse aggregates into cement mortar matrix. In order to evaluate systematically the performance of RACC, laboratory tests with nearly one thousand SPecimen were conducted for resilient modulus, fatigue properties, ultimate ban and length,abrasion, temperature contraction, and dry shrinkage. The experimental results show that the problems existed in C-ETM have to a great extends been solved by RACc. To verify the field performance and inquire into paving technology, teSt road appearsatlsfactory it is concluded that when thed ape surface laycr of semi-rigid base course, RACC is more for surface layer material than both Portland cement concrete(PCC) and asphalt concrete(AC)
文摘This paper presents the results of an experimental survey on the potential application of DARC (dry asphalt rubber concrete) in rail superstructure, within sub-ballast layers by measuring its damping and mechanical properties. Based on the environmental friendly point of view the DARC has the significant advantage as the backfill material of sub-ballast layer because the rubber comes from the waste tires of truck and its usage can results a significant recycling of non-biodegradable wastes. After a preliminary mix-design of several DARCs, with different rubber content that confirmed by using the Marshall test, the stiffness modulus and damping ratio both of a standard bituminous mixture and of dry asphalt rubber concrete with a rubber content equal to 1.5% were determined using the four points bending device. The experimental results were compared and a numerical analysis by means of a 2D lumped mass model was developed in order to evaluate the different performance within the rail superstructure in terms both of the deflection and of the pressure on sub-grade. Both the results on the mechanical and dissipative properties of the DARC and the mechanical behavior of the correlate rail superstructure encourage the authors to continue the research on the application of such material for sub-ballast layers.
文摘Waste rubber-modified asphalt has good anti-aging properties and can significantly improve the service life of asphalt pavements. For domestic and foreign scholars of rubber modified asphalt thermal oxygen aging, photo-oxidative aging and water aging some behavioural research, and rubber asphalt aging after the characteristics of the research progress are reviewed. Especially rubber-modified asphalt after light, water and other multi-factor agingsituations, the aging situation is more serious, for rubber-modified asphalt mixture aging, rubber asphalt anti-aging process research and analysis means are still very few, the future research must have more thinking.
基金the funding support from the National Natural Science Foundation of China(No.51678251)the Fundamental Research Funds for the Central Universities(NO.SCUT.2018KZ001).
文摘Breaking waste tires into crumb and adding it to asphalt as modifier to prepare asphalt rubber (AR) is an effective method to solve the waste tire problem and improve the performance of matrix asphalt. The modified asphalt has better high and low temperature performance. However, the segregation of the crumb rubber modifier (CRM) causes storage instability of the AR. At present, studies have been conducted that improving the solubility of the CRM or adding some macromolecular polymer can improve the storage stability of the AR. However, the structure and polarity of the CRM surface are rarely explored for its correlation with the storage stability of AR. In this paper, the surface structure and polarity of the CRMs was changed by four different reagents, and the properties of the ARs prepared by the CRM were measured to analyze the adhesion between the CRM and the asphalt. It is concluded that the CRM with rough porous and non-polar surface has higher storage stability due to the better interfacial adhesion, which provides a research direction for improving the storage stability of rubber asphalt.
基金the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294&RP2022015296).
文摘Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.