To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly ob...To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly observed in this study.Secondly,SEM,XRD,and TG-DSC microscopic tests were conducted to reveal the effects of the active mineral-powder admixture on the hydration degree and expansion performance of MgO and nano-MgO in HPC.Our experimental results successfully verified our hypothesis,which indicated that the expansion performance of macro-MgO and nano-MgO was indeed depressed by the addition of active mineral power admixtures,even though the mechanical property of concrete composites was effectively improved.Furthermore,the hydration test also demonstrated the negative interference on the mineral powders,which was induced by the expansion agents.It is found the amounts of hydrates tend to decrease because the mineral powder ratio reaches and exceeds 40%.Moreover,it is also concluded the effect of expansion agents is governed by the alkalinity cement paste,especially for the nano-MgO.In other words,the expansion performance of nano-MgO will vary more obviously with the hydration process,than MgO.The results of this study provide that effective experimental and theoretical data support the hydration-inhibition mechanism of magnesium expansive agents.展开更多
This paper, through XPS and IR analyses on the surface of sealing glass, identifies that the surface treatment of sealing glass by silane is a chemical process. On the basis of the analyses, the authors suggest an ide...This paper, through XPS and IR analyses on the surface of sealing glass, identifies that the surface treatment of sealing glass by silane is a chemical process. On the basis of the analyses, the authors suggest an ideal chemical bonding status between silane and glass surface.展开更多
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
基金Funded by the National Natural Science Foundation of China(No.51578325)。
文摘To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly observed in this study.Secondly,SEM,XRD,and TG-DSC microscopic tests were conducted to reveal the effects of the active mineral-powder admixture on the hydration degree and expansion performance of MgO and nano-MgO in HPC.Our experimental results successfully verified our hypothesis,which indicated that the expansion performance of macro-MgO and nano-MgO was indeed depressed by the addition of active mineral power admixtures,even though the mechanical property of concrete composites was effectively improved.Furthermore,the hydration test also demonstrated the negative interference on the mineral powders,which was induced by the expansion agents.It is found the amounts of hydrates tend to decrease because the mineral powder ratio reaches and exceeds 40%.Moreover,it is also concluded the effect of expansion agents is governed by the alkalinity cement paste,especially for the nano-MgO.In other words,the expansion performance of nano-MgO will vary more obviously with the hydration process,than MgO.The results of this study provide that effective experimental and theoretical data support the hydration-inhibition mechanism of magnesium expansive agents.
文摘This paper, through XPS and IR analyses on the surface of sealing glass, identifies that the surface treatment of sealing glass by silane is a chemical process. On the basis of the analyses, the authors suggest an ideal chemical bonding status between silane and glass surface.
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.