期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology
1
作者 Lv Zhou Xinyi Li +4 位作者 Yuanjin Pan Jun Ma Cheng Wang Anping Shi Yukai Chen 《Geodesy and Geodynamics》 EI CSCD 2024年第2期122-132,共11页
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ... The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges. 展开更多
关键词 SBAS-InSAR long-span railway bridge Deformation monitoring Bridge structure Time series deformation
下载PDF
BDS/GPS deformation analysis of a long-span cable-stayed bridge based on colored noise filtering
2
作者 Jun Ma 《Geodesy and Geodynamics》 CSCD 2023年第2期163-171,共9页
Combining GPS and BDS technology to monitor the deformation of long-span railway bridges with stricter deformation control requirements is of significance to the safety and control of the bridge and the safety of rail... Combining GPS and BDS technology to monitor the deformation of long-span railway bridges with stricter deformation control requirements is of significance to the safety and control of the bridge and the safety of railway traffic.Previous studies have ignored the influence of coloured noise in the deformation time series.This is not conducive to accurate deformation analysis of long-span railway bridges.Therefore,GPS,BDS and GPS/BDS monitoring data of Ganjiang Bridge located in Ganzhou city,Jiangxi Province,China are adopted in this paper to filter the coloured noise in the deformation time series by principal component analysis(PCA),and the influence of coloured noise on the deformation analysis results of railway bridge is analysed.The experimental results show that the diurnal temperature difference causes the mid-span and the tower of the railway cable-stayed bridge to deform with a period of about one day in the vertical and longitudinal directions,respectively.Ignoring colored noise will make the uncertainty of the deformation parameter estimation overly optimistic.PCA can significantly reduce the coloured noise,and thus reduce the uncertainty of deformation parameter estimation by about 73%.Moreover,the average difference between the daily periodic motion amplitudes of the monitoring points obtained by using GPS and BDS deformation time series is 1.65 mm.The use of GPS/BDS deformation time series is not only helpful to reduce the influence of coloured noise,but also can reduce the difference between amplitude analysis results obtained from GPS and BDS deformation time series. 展开更多
关键词 long-span railway bridges GNSS deformation monitoring Coloured noise PCA
下载PDF
Application of Long-Span Continuous Bridge Technology in Bridge Construction
3
作者 Lin Nan Qing Yang +3 位作者 Yan Liu Xu Meng Yingying Ye Zhongyang Sun 《Journal of Architectural Research and Development》 2023年第3期7-12,共6页
In order to promote the rapid development of urbanization in our country,it is necessary to improve the construction level and technology of bridge engineering.For long-span continuous bridge technology,it has the cha... In order to promote the rapid development of urbanization in our country,it is necessary to improve the construction level and technology of bridge engineering.For long-span continuous bridge technology,it has the characteristics of wide application range,various applicable conditions,and short construction period.Therefore,it is necessary to pay attention to the application of long-span continuous bridge technology.This article mainly analyzes its application in bridge construction,hoping to provide some reference for future use. 展开更多
关键词 BRIDGE long-span continuous bridge technology Construction quality
下载PDF
Analyzing the Form-Finding of a Large-Span Transversely Stiffened Suspended Cable System: A Method Considering Construction Processes
4
作者 Junyu Chen Yanfei Wang +2 位作者 Ke Chen Shiqing Huang Xiaowen Xu 《World Journal of Engineering and Technology》 2024年第2期229-244,共16页
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions... The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies. 展开更多
关键词 Cable Structure long-span Structure Form-Finding Analysis Finite Element Simulation Transverse Cable Stiffening System
下载PDF
Longitudinal force in continuously welded rail on long-span tied arch continuous bridge carrying multiple tracks 被引量:16
5
作者 闫斌 戴公连 +1 位作者 郭文华 徐庆元 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期2001-2006,共6页
Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ... Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered. 展开更多
关键词 railroad bridge long-span bridge tied arch continuous beam continuously welded rail track-bridge interaction
下载PDF
Seismic spatial effects on long-span bridge response in nonstationary inhomogeneous random fields 被引量:4
6
作者 林家浩 张亚辉 赵岩 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期75-82,共8页
The long-span bridge response to nonstationary multiple seismic random excitations is investigated using the PEM (pseudo excitation method). This method transforms the nonstationary random response analysis into ordin... The long-span bridge response to nonstationary multiple seismic random excitations is investigated using the PEM (pseudo excitation method). This method transforms the nonstationary random response analysis into ordinary direct dynamic analysis, and therefore, the analysis can be solved conveniently using the Newmark, Wilson-9 schemes or the precise integration method. Numerical results of the seismic response for an actual long-span bridge using the proposed PEM are given and compared with the results based on the conventional stationary analysis. From the numerical comparisons, it was found that both the seismic spatial effect and the nonstationary effect are quite important, and that both stationary and nonstationary seismic analysis should pay special attention to the wave passage effect. 展开更多
关键词 EARTHQUAKE NONSTATIONARY random vibration multiple excitation long-span bridge
下载PDF
Investigations on serviceability control of long-span structures under human-induced excitation 被引量:3
7
作者 Chen Xin Ding Youliang +2 位作者 Li Ai-qun Zhang Zhiqiang Sun Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期57-71,共15页
The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this pa... The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this paper, serviceability control technology and its design theory are studied. First, a novel tuned mass damper (TMD) with controllable stiffness is developed. Second, methods for modeling human-induced loads are proposed, including standing up, walking, jumping and running, and an analysis method for long-span floor response is proposed based on a finite element model. Third, a design method for long-span floors installed with a multiple TMD (MTMD) system considering human comfort is introduced, largely based on a study of existing literature. Finally, a design, analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center, Changsha New Railway Station and the Xi'an Northern Railway Station. The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures. The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures. 展开更多
关键词 long-span floor vibration control TMD human-inducing loads vibration serviceability
下载PDF
Structural health monitoring of long-span suspension bridges using wavelet packet analysis 被引量:8
8
作者 丁幼亮 李爱群 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期289-294,共6页
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib... During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations. 展开更多
关键词 structural health monitoring wavelet packet analysis wavelet packet energy spectrum ambient vibration test long-span suspension bridge
下载PDF
Seismic spatial effects on dynamic response of long-span bridges in stationary inhomogeneous random fields 被引量:3
9
作者 林家浩 张亚辉 赵岩 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第2期171-180,共10页
The seismic analysis of long-span bridges subjected to multiple ground excitations is an important problem. The conventional response spectrum method neglects the spatial effects of ground motion,and therefore may res... The seismic analysis of long-span bridges subjected to multiple ground excitations is an important problem. The conventional response spectrum method neglects the spatial effects of ground motion,and therefore may result in questionable conclusions.The random vibration approach has been regarded as more reliable.Unfortunately,so far, computational difficulties have not yet been satisfactorily resolved.In this paper,an accurate and efficient random vibration approach—pseudo excitation method (PEM),by which the above difficulties are overcome,is presented.It has been successfully used in the three dimensional seismic analysis of a number of long-span bridges with thousands of degrees of freedom and dozens of supports.The numerical results of a typical bridge show that the seismic spatial effects~ particularly the wave passage effect,are sometimes quite important in evaluating the safety of long-span bridges. 展开更多
关键词 seismic response random vibration multiple excitation long-span bridge
下载PDF
Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge 被引量:4
10
作者 Lipeng An Dejian Li +1 位作者 Peng Yu Peng Yuan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第4期186-194,共9页
To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle spac... To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system. 展开更多
关键词 long-span continuous bridge Vehicle-bridge coupled system Dynamic responseVehicle impact coefficient Vibration comfort
下载PDF
Trust-region based instantaneous optimal semi-active control of long-span spatially extended structures with MRF-04K damper 被引量:7
11
作者 Lin Wei Li Zhongxian Ding Yang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第4期447-464,共18页
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea... In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases. 展开更多
关键词 long-span spatially extended structure instantaneous optimal control semi-active control trust-regionmethod magnetorheological (MR) damper bounded constraint optimization modified Bouc-Wen model clipped-optimal control
下载PDF
Analysis on influence of seismic travelling wave effect on semi-active control for long-span rigid-continuous bridge 被引量:1
12
作者 亓兴军 李小军 周国良 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第2期199-206,共8页
The analysis approach of semi-active control for long-span rigid-continuous bridge under seismic travelling wave input is established. Magnetorheological dampers are set on the positions of the bridge beatings. The se... The analysis approach of semi-active control for long-span rigid-continuous bridge under seismic travelling wave input is established. Magnetorheological dampers are set on the positions of the bridge beatings. The semi-active control calculation and analysis are performed for a five-span rigid-continuous bridge under seismic travelling waves with different apparent surface velocities. The results indicate that travelling wave effect remarkably influences the uncontrolled seismic responses, the semi-active control seismic responses and vibration control effects for the long-span rigid-continuous bridge. It is disadvantageous to the responses of the beams and the piers under the travelling wave input with lower apparent surface velocity, and travelling wave effect can decrease the vibration control effects evidently. Therefore, the travelling wave effect should be considered for the selection of the parameter values of semi-active control system in order to get the designing control effect. 展开更多
关键词 travelling wave effect semi-active control long-span rigid-continuous bridge magnetorheoiogicai damper
下载PDF
Location optimization for the tuned mass damper system on a long-span floor
13
作者 黄孟雅 ZHANG Zhi-qiang LAN Yu-min 《Journal of Chongqing University》 CAS 2017年第1期11-24,共14页
The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the locati... The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the location optimization of the 74 sets of dampers on the floor. The main content includes the establishment of a 2D dot-matrix model for the structure, the optimal location combination searched by a genetic algorithm, and the optimal results for five working conditions by calculating the total weight. 展开更多
关键词 long-span floor tuned mass damper location optimization
下载PDF
Numerical simulation of aerodynamic derivatives and critical wind speed for long-span bridges based on simplified steady wind field
14
作者 辛大波 欧进萍 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第2期197-203,共7页
Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the crit... Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results. 展开更多
关键词 aerodynamic derivatives critical flutter wind speed numerical simulation wind tunnel test long-span bridges
下载PDF
Wind Pressure Characteristics at Windward Side of Long-Span Cantilevered Roof by Wind Tunnel Test
15
作者 鲜荣 廖海黎 李明水 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期36-41,共6页
A rigid mode of long-span cantilevered roof was tested in wind tunnel. By analyzing the relation between wind angle and wind pressure coefficient and the relation between wind angle and wind shape factor, we found tha... A rigid mode of long-span cantilevered roof was tested in wind tunnel. By analyzing the relation between wind angle and wind pressure coefficient and the relation between wind angle and wind shape factor, we found that 90° is the most disadvantageous wind angle. Furthermore, the fluctuation of wind pressure at the windward edge was reflected by power spectrum density (PSD) and coherence function. The correlation coefficients of measuring points on outer and inner surfaces verifys that the largest lift force was produced at 90°. 展开更多
关键词 long-span roof Wind tunncl test Coherence function Correlation coefficient
下载PDF
The Simulation Analysis of Long-Span Membrane Structure
16
作者 Zhongcheng Wang yunpeng Ma 《Frontiers Research of Architecture and Engineering》 2018年第1期22-24,共3页
The analysis of wind load characteristics of gas-ribbed film structure plays an important role in the performance of the long-span membrane structure.This paper mainly researches on the long-span rib membrane structur... The analysis of wind load characteristics of gas-ribbed film structure plays an important role in the performance of the long-span membrane structure.This paper mainly researches on the long-span rib membrane structure.Surface wind pressure of the membrane structure is calculated by fluent,the distribution of force and surface pressure of the membrane structure under different angles and wind speeds is obtained.The worst working condition of the wind approach angle is 60°.Maximum force angle is positively correlated with windward angle and the length of structure. 展开更多
关键词 long-span SIMULATION CFD SURFACE PRESSURE Windward ANGLE
下载PDF
Analysis of Key Issues in Design Codes for Long-Span Highway Bridges
17
作者 Meng Wan 《Journal of Architectural Research and Development》 2020年第2期20-22,共3页
In recent years,with the continuous expansion of China's infrastructure construction,related construction work,including highway and bridge construction,has been steadily progressing.Among them,bridges are an impo... In recent years,with the continuous expansion of China's infrastructure construction,related construction work,including highway and bridge construction,has been steadily progressing.Among them,bridges are an important component of infrastructure construction,and their safety and stability are related to the travel of the masses and even the safety of their lives.China has a strict management system for bridge design specifications.This article mainly takes long-span highway bridges as an example to study the key issues of its design specifications and proposes countermeasures for related work. 展开更多
关键词 long-span highway bridge Design code Key issues RESPONSE
下载PDF
Fatigue Safety Assessment of Concrete Continuous Rigid Frame Bridge Based on Rain Flow Counting Method and Health Monitoring Data
18
作者 Yinghua Li Junyong He +1 位作者 Xiaoqing Zeng Yanxing Tang 《Journal of Architectural Environment & Structural Engineering Research》 2023年第3期31-40,共10页
The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming... The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration. 展开更多
关键词 long-span continuous rigid frame bridge Rain flow counting method Fatigue performance Health monitoring system Strain monitoring data
下载PDF
Full-scale tests of wind effects on a long span roof structure 被引量:5
19
作者 Fu Jiyang Zheng Qingxing +1 位作者 Wu Jiurong Xu An 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第2期361-372,共12页
Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind ef... Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind effects on a long-span steel roof structure during the passage of Typhoon Fanapi. Some fi eld data, including wind speed and direction, acceleration responses, etc., were continuously and simultaneously recorded during the passage of the typhoon. Comprehensive analysis of the measured data is conducted to evaluate the typhoon-generated wind characteristics and its effects on a long-span steel roof. The fi rst four natural frequencies and their vibration mode shapes of the Guangzhou International Sports Arena(GISA) roof are evaluated by the stochastic subspace identifi cation(SSI) method and comparisons with those from fi nite element(FE) analysis are made. Meanwhile, damping ratios of the roof are also identifi ed by the SSI method and compared with those identifi ed by the random decrement method; the amplitude-dependent damping behaviors are also discussed. The fullscale measurement results are further compared with the corresponding wind tunnel test results to evaluate its reliability. The results obtained from this study are valuable for academic and professional engineers involved in the design of large-span roof structures. 展开更多
关键词 long-span steel roof wind effect field measurement
下载PDF
Research and Implementations of Structural Monitoring for Bridges and Buildings in Japan 被引量:6
20
作者 Yozo Fujino Dionysius MSiringoringo +2 位作者 Yoshiki Ikeda Tomonori Nagayama Tsukasa Mizutani 《Engineering》 SCIE EI 2019年第6期1093-1119,共27页
This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures us... This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan. 展开更多
关键词 Structural monitoring long-span bridge High-rise building Seismic monitoring Wind-induced responses Pavement and slab monitoring Structural control monitoring Structural assessment
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部