期刊文献+
共找到2,333篇文章
< 1 2 117 >
每页显示 20 50 100
Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers
1
作者 Mohamad Shahrokh Abdi Masoud Nekooei Mohammad-Ali Jafari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期503-510,共8页
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc... Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively. 展开更多
关键词 seismic control vertical mass isolation base shear magnetorheological damper semi-active control
下载PDF
Impact of surface-reflected seismic waves on the seismic isolation performance of circular tunnel isolation layers
2
作者 LU Jiahui LUO Junjie +3 位作者 HUANG Xiangyun HONG Junliang HE YanXin ZHOU Fulin 《Journal of Mountain Science》 SCIE CSCD 2024年第3期901-917,共17页
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored... Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers. 展开更多
关键词 Circular tunnel seismic isolation Surface reflection Response of liners Wave-function expansion method
下载PDF
Seismic Response Analysis of Steel Structure Isolation System Under Long-Period Seismic Motion
3
作者 Long Yu Mei Sheng +1 位作者 Huan Feng Jianan Hu 《Journal of Architectural Research and Development》 2024年第3期147-155,共9页
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis... To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings. 展开更多
关键词 Long-period seismic motion Steel structure Mid-story isolation structure isolation bearing seismic performance
下载PDF
Seismic Reduction and Isolation Design Strategies for Bridges in High-Intensity Earthquake Areas
4
作者 Shengtang Wang 《Journal of Architectural Research and Development》 2024年第1期68-74,共7页
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel... High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas. 展开更多
关键词 High-intensity earthquake areas Rubber isolation seismic reinforcement technology
下载PDF
Study on the Influence of Aspect Ratio on the Seismic Response and Overturning Resistance of a New Staggered Story Isolated Structure
5
作者 Tiange Zhao Dewen Liu 《World Journal of Engineering and Technology》 2024年第3期617-634,共18页
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif... The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases. 展开更多
关键词 Aspect Ratio A New Staggered Story isolated Structure seismic Response Overturning Resistance Ratio isolated Bearing
下载PDF
Uncertainty in the seismic performance of semi-active base isolation systems
6
作者 Xiaoyue Wang Zhe Qu 《Earthquake Research Advances》 CSCD 2023年第2期62-70,共9页
In a conventional base isolation system,minimizing the seismic responses of the superstructure is always at the cost of increasing the isolator's response.The semi-active control of the isolator has been considere... In a conventional base isolation system,minimizing the seismic responses of the superstructure is always at the cost of increasing the isolator's response.The semi-active control of the isolator has been considered an effective solution to such a dilemma.It tunes the real-time properties of the isolator according to preset rules to further reduce the superstructure's seismic responses without increasing that of the isolator or vice versa.However,the number of ground motion records used to design and validate the controller,i.e.,the preset rules,in existing studies is usually very small and therefore is suspectable if it is adequate to address the significant uncertainty in the shaking of future earthquakes.This paper critically reviews the performance of the proportional-integralderivative(PID),linear-quadratic regulator(LQR),and fuzzy controllers in semi-active base isolation systems with magnetorheological(MR)dampers subjected to highly uncertain ground motion inputs through numerical simulations.The results show that the control performance of the controllers varies significantly with the increasing number of input records,suggesting the necessity of using at least 50 ground motion records to appropriately assess the performance uncertainty of semi-active base isolation systems.More importantly,the superior performance of the optimized controllers is not guaranteed if the system is subjected to ground motions that are new to the controller,even if the controller has been optimized for thousands of existing ground motions.It highlights the need of improving the adaptability of the semi-active systems for uncertain ground motion inputs. 展开更多
关键词 seismic isolation Semi-active control MR damper Control performance UNCERTAINTY
下载PDF
Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel 被引量:15
7
作者 Shaosen Ma Weizhong Chen Wusheng Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期159-171,共13页
Foamed concrete has a good energy absorption capability and can be used as seismic isolation material for tunnels. This study aims to investigate the mechanical properties and associated seismic isolation effects of f... Foamed concrete has a good energy absorption capability and can be used as seismic isolation material for tunnels. This study aims to investigate the mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel. For this, a series of uniaxial/triaxial compression tests was conducted to understand the effects of concrete density, confining stress and strain rate on the mechanical properties of foamed concrete. The direct shear tests were also performed to investigate the effects of concrete density and normal stress on the nonlinear behaviors of foamed concrete layer-lining interface. The test results showed that the mechanical properties of foamed concrete are significantly influenced by the concrete density. The foamed concrete also has high volumetric compressibility and strain-rate dependence. The peak stress. residual stress. shear stiffness and residual friction coefficient of the foamed concrete layer-lining interface are influenced by the foamed concrete density and normal stress applied. Then, a crushable foam constitutive model was constructed using ABAQUS software and a composite exponential model was also established to study the relationship between shear stress and shear displacement of the interface, in which their parameters were fitted based on the experimental results. Finally, a parametric analysis using the finite element method(FEM) was conducted to understand the influence of foamed concrete layer properties on the seismic isolation effect, including the density and thickness of the layer as well as the shear stiffness and residual friction coefficient of the interface. It was revealed that lower density and greater thickness in addition to smaller shear stiffness or residual friction coefficient of the foamed concrete layer could yield better seismic isolation effect, and the influences of the first two tend to be more significant. 展开更多
关键词 ROCK TUNNEL Foamed concrete seismic isolation LAYER seismic isolation mechanism
下载PDF
Three-dimensional seismic isolation bearing and its application in long span hangars 被引量:12
8
作者 Li Xiongyan Xue Suduo Cai Yancheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期55-65,共11页
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ... Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range. 展开更多
关键词 three-dimensional seismic isolation bearing (3DSIB) seismic isolation HANGAR axial force acceleration response
下载PDF
Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges 被引量:11
9
作者 Peng, Tianbo Yu, Xuntao +1 位作者 Wang, Zhennan Han, Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期163-172,共10页
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipat... The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges. 展开更多
关键词 double spherical seismic isolation (DSSI) bearing seismic isolation seismic performance continuous girder bridge
下载PDF
Seismic isolation analysis of FPS bearings in spatial lattice shell structures 被引量:14
10
作者 Yong-Chul Kim Xue Suduo +2 位作者 Zhuang Peng Zhao Wei Li Chenghao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期93-102,共10页
A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bea... A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bearings is developed. Then, seismic isolation studies are performed for both double-layer and single-layer lattice shell structures under different seismic input and design parameters of the FPS. The influence of frictional coefficients and radius of the FPS on seismic performance are discussed. Based on the study, some suggestions for seismic isolation design of lattice shells with FPS bearings are given and conclusions are made which could be helpful in the application of FPS. 展开更多
关键词 seismic isolation friction pendulum system spatial structure lattice shell parameter analysis
下载PDF
Reduction of structural response to near fault earthquakes by seismic isolation columns and variable friction dampers 被引量:5
11
作者 Y.Ribakov 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期113-122,共10页
This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented... This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones. These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion. As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases. However, this positive effect is achieved on account of displacements occurring in the isolating columns. These displacements become very large when the structure is subjected to a strong earthquake. In this case, impact may occur between the parts of the isolating column yielding their damage or collapse. In order to limit the displacements in the isolating columns, it is proposed to add variable friction dampers. A method for selecting the dampers' properties is proposed. It is carried out using an artificial ground motion record and optimal active control algorithm. Numerical simulation of a sevenstory structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns. 展开更多
关键词 seismic isolating columns variable friction dampers hybrid seismic isolation near fault earthquakes control algorithm
下载PDF
A new seismic isolation system and its feasibility study 被引量:8
12
作者 Jia Gaofeng~+ and Shi Zhifei~(++) School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China Graduated Student ++ Professor 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期75-82,共8页
This paper introduces a new seismic isolation system called a periodic foundation (PF), where inclusions are periodically arranged. The PF is different from traditional base isolation in that it causes a fundamental... This paper introduces a new seismic isolation system called a periodic foundation (PF), where inclusions are periodically arranged. The PF is different from traditional base isolation in that it causes a fundamental frequency shift in the structure, thus reducing its response and generating a frequency gap. If the frequency contents of a seismic wave fall into the gap, it can not propagate in the foundation. Thus, it will exert no influence on the structure above. A systematic study of the band of frequency gap for a 2D PF is conducted. The influence of physical and geometrical parameters such as density and elastic modulus as well as filling fraction of the PF and its materials on the band of frequency gap are investigated, and a design with a frequency gap as low as 2.49-3.72 Hz is achieved. This band of frequency gap corresponds well to the design spectra in earthquake engineering. Numerical simulations of a six-story frame structure with different foundations demonstrate that a proposed PF can greatly reduce the seismic response of an isolated structure. This investigation shows that PFs have great potential in future applications of seismic isolation technology. 展开更多
关键词 seismic isolation periodic foundation band of frequency gap
下载PDF
Research and application on three-dimensional seismic and vibration isolation for building 被引量:5
13
作者 魏陆顺 周福霖 +1 位作者 谭平 任珉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期62-66,共5页
This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration i... This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains. 展开更多
关键词 three-dimensional seismic and vibration isolator vertical vibration isolation horizontal seismic isolation engineering application
下载PDF
Resilience-based retrofitting of existing urban RC-frame buildings using seismic isolation 被引量:12
14
作者 Yang Cantian Xie Linlin +4 位作者 Li Aiqun Zeng Demin Jia Junbo Chen Xi Chen Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第4期839-853,共15页
The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an eff... The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters(EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes(i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities. 展开更多
关键词 existing urban RC frame building retrofitting using seismic isolation seismic resilience yield ratio
下载PDF
Study on the seismic performance of a double spherical seismic isolation bearing 被引量:4
15
作者 Peng Tianbo Li Jianzhong Xu Yan Fan Lichu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第4期439-446,共8页
In this paper, the configuration and working mechanism of the recently developed double spherical seismic isolation (DSSI) bearing are introduced in detail. Then, vertical displacement of the DSSI bearing due to sli... In this paper, the configuration and working mechanism of the recently developed double spherical seismic isolation (DSSI) bearing are introduced in detail. Then, vertical displacement of the DSSI bearing due to sliding on a spherical surface is analyzed. The results from seismic performance testing of the bearing are given, and a numerical analysis of a four span continuous girder bridge is performed. The numerical analysis compares the influence of three different bearing arrangement schemes on the structural seismic response, and the results show that the DSSI bearing is effective in increasing the vertical load bearing capacity, reducing the vertical displacement, and controlling the energy dissipation capacity within a certain range. 展开更多
关键词 DSSI bearing seismic isolation vertical displacement energy dissipation continuous girder bridges
下载PDF
Spring tube braces for seismic isolation of buildings 被引量:2
16
作者 V.Karayel E.Yuksel +1 位作者 T.Gokce F.Sahin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期219-231,共13页
Abstract: A new low-cost seismic isolation system based on spring tube bracings has been proposed and studied at the Structural and Earthquake Engineering Laboratory of Istanbul Technical University. Multiple compres... Abstract: A new low-cost seismic isolation system based on spring tube bracings has been proposed and studied at the Structural and Earthquake Engineering Laboratory of Istanbul Technical University. Multiple compression-type springs are positioned in a special cylindrical tube to obtain a symmetrical response in tension and compression-type axial loading. An isolation floor, which consists of pin-ended steel columns and spring tube bracings, is constructed at the foundation level or any intermediate level of the building. An experimental campaign with three stages was completed to evaluate the capability of the system. First, the behavior of the spring tubes subjected to axial displacement reversals with varying frequencies was determined. In the second phase, the isolation floor was assessed in the quasi-static tests. Finally, a scaled 3D steel frame was tested on the shake table using actual acceleration records. The transmitted acceleration to the floor levels is greatly diminished because of the isolation story, which effects longer period and higher damping. There are no stability and self- centering problems in the isolation floor. 展开更多
关键词 seismic isolation spring tube base isolation low-cost isolation
下载PDF
Recent progress and application on seismic isolation energy dissipation and control for structures in China 被引量:20
17
作者 Zhou Fulin Tan Ping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期19-27,共9页
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam... China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world. 展开更多
关键词 seismic isolation energy dissipation passive contro hybrid control
下载PDF
Pseudo-Dynamic Testing for Seismic Performance Assessment of Buildings with Seismic Isolation System Using Scrap Tire Rubber Pad Isolators 被引量:6
18
作者 Huma Kanta Mishra Akira Igarashi +1 位作者 Dang Ji Hiroshi Matsushima 《Journal of Civil Engineering and Architecture》 2014年第1期73-88,共16页
Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically mode... Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically modeled, while the base isolation layer is considered as the experimental substructure in the pseudo-dynamic tests. The test result verifies that the STRP isolator shows acceptable shear deformation performance predicted by the design methods, and demonstrated that seismic isolation using STRP works as a protective measure to provide enhanced seismic performance of the building indicated by the reduction of top floor absolute acceleration, drift and base shear as designated. 展开更多
关键词 Pseudodynamic test STRP isolator numerical simulation base isolation seismic performance.
下载PDF
Research and development of seismic base isolation technique for civil engineering structures 被引量:1
19
作者 Zhu Hongping Mei Shilong +2 位作者 Li Li Ye Kun Yuan Yong 《Engineering Sciences》 EI 2010年第1期16-21,共6页
Base isolation is one of the most promising alternatives among the structure control methods. In recent decades, base isolation has been seriously considered for civil structures, such as buildings and bridges, subjec... Base isolation is one of the most promising alternatives among the structure control methods. In recent decades, base isolation has been seriously considered for civil structures, such as buildings and bridges, subjected to ground motion. The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology (HUST) are introduced. The achievements include project applications, experimental research results and theoretical innovation. 展开更多
关键词 seismic base isolation civil structures DEVELOPMENT APPLICATION
下载PDF
A Study on the Seismic Isolation Systems of Bridges with Lead Rubber Bearings 被引量:1
20
作者 Woo-Suk Kim Dong-Joon Ahn Jong-Kook Lee 《Open Journal of Civil Engineering》 2014年第4期361-372,共12页
This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is dev... This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is developed for all Lead-Rubber Bearing (LRB) seismic isolation system on piers and abutments which placed in between super-structure and sub-structure. Design forces, displacements, and drifts are given distinctive consideration in accordance with Caltrans Seismic Design Criteria (2004). Most of all, total displacement on design for all LRBs case is reduced comparing with combined lead-rubber and elastomeric bearing system . Therefore, this represents substantial reduction in cost because of reduction of expansion joint. This presents a summary of analysis and design of seismic isolation system by energy mitigation with LRB on bridges. 展开更多
关键词 seismic isolation System Bridge Lead Rubber BEARING (LRB) Energy MITIGATION
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部