期刊文献+
共找到5,946篇文章
< 1 2 250 >
每页显示 20 50 100
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
1
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
2
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Analysis of high-power disk laser welding stability based on classification of plume and spatter characteristics 被引量:6
3
作者 高向东 文茜 Seiji KATAYAMA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3748-3757,共10页
Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Ch... Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform. 展开更多
关键词 high-power disk laser welding PLUME SPATTER feature classification STABILITY
下载PDF
Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding 被引量:8
4
作者 王腾 高向东 +1 位作者 Katayama SEIJI 金小莉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第3期245-251,共7页
High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface pla... High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding. 展开更多
关键词 plasma feature color image processing disk laser welding
下载PDF
Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding 被引量:2
5
作者 高向东 刘桂谦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期32-36,共5页
During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to ... During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to welding stability and quality.Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW.An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images.Plume area,laser beam path through the plume,swing angle,distance between laser beam focus and plume image centroid,abscissa of plume centroid and spatter numbers are defined as eigenvalues,and the weld bead width was used as a characteristic parameter that reflected welding stability.Welding status was distinguished by SVM(support vector machine) after data normalization and characteristic analysis.Also,PCA(principal components analysis) feature extraction was used to reduce the dimensions of feature space,and PSO(particle swarm optimization) was used to optimize the parameters of SVM.Finally a classification model based on SVM was established to estimate the weld bead width and welding stability.Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width,thus providing an experimental example of monitoring high-power disk laser welding quality. 展开更多
关键词 high-power disk laser welding metallic plume spatter support vector machine
下载PDF
Study on the Effects of Helium-Argon Gas Mixture on the Laser Welding Performance of High Temperature Alloys
6
作者 Xiongzi CHEN Hesi PENG +2 位作者 Chunchen YAO Yu DAI Yewen QIN 《Research and Application of Materials Science》 2023年第2期21-24,共4页
In order to solve the problem of porosity in laser deep penetration welding of GH3625 high-temperature alloy plates,five different ratios of high-purity helium gas and high-purity argon gas mixed gases were compared i... In order to solve the problem of porosity in laser deep penetration welding of GH3625 high-temperature alloy plates,five different ratios of high-purity helium gas and high-purity argon gas mixed gases were compared in welding experiments after various process parameter improvements and adjustments failed to achieve Class I welds.The experimental results show that using high-purity helium gas or a mixture of 50%high-purity helium gas and 50%high-purity argon gas can both achieve Class I welds.This indicates that using high-purity helium gas or an appropriate mixed gas instead of pure argon is one of the effective ways to solve the problem of porosity in laser deep penetration welding of high-temperature alloys.The mixture of 50%high-purity argon gas and 50%high-purity helium gas can reduce the consumption of high-purity helium gas,lower production costs,and is more suitable. 展开更多
关键词 high-temperature alloy laser welding pores shielding gas welding quality
下载PDF
Image processing of weld pool and keyhole in Nd:YAG laser welding of stainless steel based on visual sensing 被引量:3
7
作者 高进强 秦国梁 +3 位作者 杨家林 何建国 张涛 武传松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期423-428,共6页
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit... In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively. 展开更多
关键词 laser welding KEYHOLE weld pool EDGE image processing algorithm
下载PDF
Determination of energy coupling to material in laser welding by a novel “sandwich” method 被引量:1
8
作者 张屹 史如坤 李力钧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1701-1710,共10页
A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key... A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall. 展开更多
关键词 laser welding mathematical energy coupling model "sandwich" method KEYHOLE
下载PDF
基于Simufact Welding的激光熔覆仿真研究
9
作者 敖良忠 贾文彬 +1 位作者 魏永超 丁坚 《山西冶金》 CAS 2023年第12期102-105,232,共5页
激光熔覆是利用高能量光束将合金粉末通过预设轨迹将受损零件修复成完整状态的一项新兴技术,粉末在经高能激光照射后变为熔融状态,熔覆层与基体结合,基体的材料性能便得以提升。基于钛合金强度高的特点,以Ti-6Ai-V粉末为研究对象,利用Si... 激光熔覆是利用高能量光束将合金粉末通过预设轨迹将受损零件修复成完整状态的一项新兴技术,粉末在经高能激光照射后变为熔融状态,熔覆层与基体结合,基体的材料性能便得以提升。基于钛合金强度高的特点,以Ti-6Ai-V粉末为研究对象,利用Simufact Welding对Ti-6AI-4V粉末进行激光熔覆仿真,并通过单道激光熔覆仿真研究激光熔覆过程中激光功率、扫描速度、初始温度对熔覆的影响规律,同时比较激光功率、扫描速度、初始温度对熔池温度变化速率的影响。 展开更多
关键词 激光熔覆 仿真分析 Simufact welding
下载PDF
Porosity sensitivity of A356 Al alloy during fiber laser welding 被引量:4
10
作者 李凯 芦凤桂 +2 位作者 郭松涛 崔海超 唐新华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2516-2523,共8页
In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding par... In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding parameters such as laser power, welding speed and defocusing value on both kinds of porosities were systemically analyzed respectively, and the shape and fluctuation of plume of the keyhole were observed to reflect the stability of the keyhole. The results show that increasing laser power or decreasing laser spot size can lead to the rising of both number and occupied area of pores in the weld; meanwhile, the plume fluctuates violently over the keyhole, which is always companied with the intense metallic vapor, liquid metal spatter and collapsing in the keyhole, thus more pores are generated in the weld. The porosity in the weld reaches the minimum at welding velocity of 2.0 m/min when laser power is 5 kW and defocusing value is 0. 展开更多
关键词 A356 Al alloy fiber laser welding POROSITY KEYHOLE PLUME
下载PDF
Stitch welding of Ti-6Al-4V titanium alloy by fiber laser 被引量:3
11
作者 李翠 李斌 +3 位作者 吴泽锋 祁小勇 叶兵 王爱华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期91-101,共11页
Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by ... Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram. 展开更多
关键词 Ti-6Al-4V titanium alloy fiber laser stitch welding welding parameter POROSITY
下载PDF
Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field 被引量:2
12
作者 周广涛 黄涛 +2 位作者 郭玉龙 黄奇凡 张波 《China Welding》 CAS 2023年第4期38-48,共11页
The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel... The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping. 展开更多
关键词 dissimilar metal welding laser tailor welded blank synchronous thermal field boron steel microstructure mechanical property
下载PDF
Microstructures and Toughness of Weld Metai of Ultrafine Grained Ferritic Steel by Laser Welding 被引量:11
13
作者 XudongZHANG WuzhuCHEN +3 位作者 ChengWANG LinZHAO YunPENG ZhilingTIAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期755-759,共5页
3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is l... 3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops. 展开更多
关键词 laser welding Ultrafine grained steel MICROSTRUCTURE TOUGHNESS
下载PDF
Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy 被引量:14
14
作者 Lei Zhen Li Xiaoyu +2 位作者 Xu Fujia Xu Fujia Chang Yunfeng 《China Welding》 EI CAS 2017年第4期10-19,共10页
Welding research of A6N01S-T5 aluminum alloy profile for high-speed train was done by using laser-MIG hybrid welding and MIG welding individually. And the weld appearance,welding distortion,mechanical properties of th... Welding research of A6N01S-T5 aluminum alloy profile for high-speed train was done by using laser-MIG hybrid welding and MIG welding individually. And the weld appearance,welding distortion,mechanical properties of the joints and microstructures were analyzed. The test results demonstrated that high-efficient welding for the profile can be achieved by using laser-MIG hybrid welding,the speed of which can be over 3. 0 m/min. The processing had a good gap bridging ability,even if the gap of the butt joint was up to 2. 0 mm,a good weld appearance can also be got. While the hybrid welding speed was greater than 2. 5 m/min,the welding distortion of the laser-tandem MIG hybrid joints was just about 33% of that of the MIG joints,but the welding efficiency was over 3 times of MIG welding. And tensile strength of the hybrid joints was 85% of that of A6N01S-T5 base metal,9% higher than that of the MIG joints. Fatigue properties was tested individually with pulsed tensile fatigue method in the condition of 1 × 10~7 lifetime. The test results demonstrated that the fatigue strength of the joints was a little lower than that of base material,which could be up to 115 MPa. But the fatigue strength of hybrid welding joints was 107. 5 MPa,which was 23% higher than 87 MPa of MIG welding joints. 展开更多
关键词 HIGH-SPEED TRAIN aluminum alloy profile laser MIG hybrid welding
下载PDF
INVESTIGATION OF LASER BEAM WELDING PROCESS OF AZ61 MAGNESIUM-BASED ALLOY 被引量:9
15
作者 H.Y. Wang Z.J. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第4期287-294,共8页
Laser welling process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welling speed, and protection gas flow at the to... Laser welling process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welling speed, and protection gas flow at the top and bottom is researched. The results show that an ideal well bead can be formed by choosing the processing parameters properly. An optimized parameter range is obtained by a large number of experiments. Among them, laser power and welling speed are the two main parameters that determine the well width and dimensions. The protect gas flow rate has a slight effect on the well width, but it directly effects the surface color of the well. The test results for typical welds indicate that the microhardness and tensile strength of the well zone are better than that of the base metal A fine-grained well region has been observed and no obvious heat-affected zone is found. The well zone mainly consists of small α-Mg phase, (α + Al12Mg17), and other eutectic phases. The small grains and the eutectic phases in the joint are believed to play an important role in the increase of the strength of wells for AZ61 magnesium alloys. 展开更多
关键词 magnesium alloy laser beam welding laser power welling speed
下载PDF
YAG laser welding with surface activating flux 被引量:8
16
作者 樊丁 张瑞华 +2 位作者 田中学 中田一博 牛尾诚夫 《China Welding》 EI CAS 2003年第2期83-86,共4页
YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fanta... YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux. 展开更多
关键词 YAG laser laser welding surface activating flux weld shape weld penetration
下载PDF
Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052 被引量:10
17
作者 李永强 赵熹华 +2 位作者 赵贺 曹海鹏 赵涣凌 《China Welding》 EI CAS 2008年第2期42-46,共5页
The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld... The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width ,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding( LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0. 8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW. 展开更多
关键词 hybrid welding laser welding aluminum alloy tensile shear load
下载PDF
Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy 被引量:21
18
作者 Chang Yunfeng Lei Zhen +2 位作者 Wang Xuyou Teng Bin Yang Haifeng 《China Welding》 EI CAS 2018年第3期35-41,共7页
The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum ... The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input. 展开更多
关键词 aluminum alloy hybrid welding with filling wire deposition rate laser keyhole
下载PDF
Effect of filler wire on the joint properties of AZ31 magnesium alloys using CO_2 laser welding 被引量:13
19
作者 王红英 李志军 《China Welding》 EI CAS 2007年第2期16-21,共6页
Laser welding with filler wire of AZ31 magnesium alloys is investigated using a CO2 laser experimental system. The effect of three different filler wires on the joint properties is researched. The results show that th... Laser welding with filler wire of AZ31 magnesium alloys is investigated using a CO2 laser experimental system. The effect of three different filler wires on the joint properties is researched. The results show that the weld appearance can be effectively improved when using laser welding with filler wire. The microhardness and tensile strength of joints are almost the same us those of the base metal when ER AZ31 or ER AZ61 wire is adopted. However, when the filler wire of ER 5356 aluminum alloy is used, the mechanical properties of flints become worse. For ER AZ31 and ER AZ61 filler wires, the microstructure of weld zone slws small dendrite grains. In comparison, for ER 5356 filler wire, the weld shows a structure of snowy dendrites and many intermetallic compounds and eutectic phases distribute in the dendrites. These intermetallic constituents with low melting point increase the tendency of hot crack and result in fiagile joint properties. Therefore, ER AZ31 and ER AZ61 wire are more suitable filler material than ER 5356 for CO2 laser welding of AZ31 magnesium alloys. 展开更多
关键词 magnesium alloys laser welding filler wire
下载PDF
Effects of activating flux on CO_2 laser welding process of 6013 Al alloy 被引量:11
20
作者 QIN Guo-liang WANG Guo-gang ZOU Zeng-da 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期23-29,共7页
In order to increase the absorption of laser energy and improve the weld appearance in laser welding of Al alloy, 1.8 mm- 6013 Al alloy plate was welded by activating flux CO2 laser welding. Activating flux includes o... In order to increase the absorption of laser energy and improve the weld appearance in laser welding of Al alloy, 1.8 mm- 6013 Al alloy plate was welded by activating flux CO2 laser welding. Activating flux includes oxide and fluoride, which was coated on the workpiece surface before welding. The experimental results show that the activating flux can effectively improve the absorption of CO2 laser energy and increase the amount of the molten base metal. The improvement on the absorption of laser energy by oxide activating flux is greater than that by fluoride activating flux or two-component activating flux, but the slag detachability made from both the single activating flux and two-activating flux is poor. The gas pore sensitivity with oxide activating flux is much higher than that with fluoride activating flux in CO2 laser welding of 6013 Al alloy. 展开更多
关键词 laser welding aluminum alloy activating flux weld appearance gas pore
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部