Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotar...This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.展开更多
Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-powe...Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.展开更多
High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow ...High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.展开更多
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ...The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.展开更多
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine...Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.展开更多
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
BACKGROUND Microwave endometrial ablation(MEA)is a minimally invasive treatment method for heavy menstrual bleeding.However,additional treatment is often required after recurrence of uterine myomas treated with MEA.Ad...BACKGROUND Microwave endometrial ablation(MEA)is a minimally invasive treatment method for heavy menstrual bleeding.However,additional treatment is often required after recurrence of uterine myomas treated with MEA.Additionally,because this treatment ablates the endometrium,it is not indicated for patients planning to become pregnant.To overcome these issues,we devised a method for ultrasound-guided microwave ablation of uterine myoma feeder vessels.We report three patients successfully treated for heavy menstrual bleeding,secondary to uterine myoma,using our novel method.CASE SUMMARY All patients had a favorable postoperative course,were discharged within 4 h,and experienced no complications.Further,no postoperative recurrence of heavy menstrual bleeding was noted.Our method also reduced the myoma’s maximum diameter.CONCLUSION This method does not ablate the endometrium,suggesting its potential appli-cation in patients planning to become pregnant.展开更多
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal...Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.展开更多
Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has bee...Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.展开更多
We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a ...We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters.Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.展开更多
As rice consumption increases,ensuring its safety has become a priority for the food industry.To address this concern,the industry is exploring a single-pass microbial inactivation treatment at the rough rice stage.In...As rice consumption increases,ensuring its safety has become a priority for the food industry.To address this concern,the industry is exploring a single-pass microbial inactivation treatment at the rough rice stage.In this study,a long-grain rice variety,RT7321[21.2%wet basis(WB)and a 20 mm bed thickness]was exposed to microwave radiation(915 MHz frequency)at powers of 16,18,and 20 kW for durations of 1,2,and 3 min.We found that the highest microwave power(20 kW)and the longest exposure duration(3 min)produced the greatest reduction in total aerobic count and total fungal count,reducing them by up to 1.21 and 5.01 log(CFU/g),respectively.Our findings provided insights into the used to high-power,shortduration 915 MHz microwave technology for decontamination purposes in rough rice to help improve the microbial safety of rice.The aim is to develop a single-pass drying approach for microbial inactivation in rice processing facilities while ensuring that the yield and quality is not compromised.展开更多
Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface feat...Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2)nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.展开更多
The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-freque...The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-frequency cavity.Utilizing a higher-order mode cavity can effectively reduce the volume loss of the high-frequency cavity.The rotatable dielectric pieces as a tuning mechanism can compensate for the degradation of the form factor of the higher-order mode.Nevertheless,the introduction of dielectric causes additional volume loss.To address these issues,this paper proposes a novel design scheme by adding a central metal rod to the higher-order mode cavity tuned by dielectrics,which improves the performance of the haloscope due to the increased effective volume of the cavity detector.The superiority of the novel design is demonstrated by comparing its simulated performance with previous designs.Moreover,the feasibility of the scheme is verified by the full-wave simulation results of the mechanical design model.展开更多
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the...This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.展开更多
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol...Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.展开更多
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic st...This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金support from the National Natural Science Foundation of China(Grant No.41827806)Liaoning Provincial Science and Technology Program(Grant No.2022JH2/101300109).
文摘This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.
基金support from the Na-tional Natural Science Foundation of China(Grant No.41827806)the liaoning Revitalization Talent Program of China(Grant No.XLYCYSZX1902).
文摘Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.
基金This work was financially supported by the National Natural Science Foundation of China(52130510,62071120,52075097,52205454,52375413)the Natural Science Foundation of Jiangsu Province(BE2022066,BZ2023043,BK20202006,BK20211562)Science and Technology Program of Suzhou,Jiangsu Province,China(SYG202302).
文摘High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.
基金financial support from the National Natural Science Foundation of China (52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing (STRZ202203)the financial support provided by the China Scholarship Council (CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship,Australia。
文摘The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.
基金financial support from the National Natural Science Foundation of China(52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing(STRZ202203)the financial support provided by the China Scholarship Council(CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship。
文摘Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
文摘BACKGROUND Microwave endometrial ablation(MEA)is a minimally invasive treatment method for heavy menstrual bleeding.However,additional treatment is often required after recurrence of uterine myomas treated with MEA.Additionally,because this treatment ablates the endometrium,it is not indicated for patients planning to become pregnant.To overcome these issues,we devised a method for ultrasound-guided microwave ablation of uterine myoma feeder vessels.We report three patients successfully treated for heavy menstrual bleeding,secondary to uterine myoma,using our novel method.CASE SUMMARY All patients had a favorable postoperative course,were discharged within 4 h,and experienced no complications.Further,no postoperative recurrence of heavy menstrual bleeding was noted.Our method also reduced the myoma’s maximum diameter.CONCLUSION This method does not ablate the endometrium,suggesting its potential appli-cation in patients planning to become pregnant.
基金financially supported by the Shenzhen Science and Technology Program (JCYJ20200109105805902,JCYJ20220818095805012)the National Natural Science Foundation of China (22208221,22178221,42377487)+2 种基金the Scientific and Technological Plan of Guangdong Province (2019B090905005,2019B090911004)the Natural Science Foundation of Guangdong Province (2021A1515110751)the Guangdong Basic and Applied Basic Research Foundation (2022A1515110477,2021B1515120004)。
文摘Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03020001)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSC-CIP010)the Fundamental Research Funds for the Central Universities。
文摘Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.
基金partly supported by the National Natural Science Foundation of China (Grant Nos.12074179 and U21A20436)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301702)+2 种基金the Natural Science Foundation of Jiangsu Province,China (Grant Nos.BE2021015-1 and BK20232002)the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.20220ZB16)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2023LZH002)。
文摘We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters.Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.
基金supported, in part, by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Act Fundingthe University of Arkansas Grain and Rice Processing Program, USA
文摘As rice consumption increases,ensuring its safety has become a priority for the food industry.To address this concern,the industry is exploring a single-pass microbial inactivation treatment at the rough rice stage.In this study,a long-grain rice variety,RT7321[21.2%wet basis(WB)and a 20 mm bed thickness]was exposed to microwave radiation(915 MHz frequency)at powers of 16,18,and 20 kW for durations of 1,2,and 3 min.We found that the highest microwave power(20 kW)and the longest exposure duration(3 min)produced the greatest reduction in total aerobic count and total fungal count,reducing them by up to 1.21 and 5.01 log(CFU/g),respectively.Our findings provided insights into the used to high-power,shortduration 915 MHz microwave technology for decontamination purposes in rough rice to help improve the microbial safety of rice.The aim is to develop a single-pass drying approach for microbial inactivation in rice processing facilities while ensuring that the yield and quality is not compromised.
基金supported by the National Natural Science Foundation of China(22372087)the Natural Science Foundation of Shandong Province(ZR2021ME039)+4 种基金the Applied Basic Research Programs of National Textile Industry Federation(J202106)the Newtech Textile Technology Development(Shanghai)Co.,Ltd.,Chinathe Jiangsu New Vison Advanced Functional Fiber Innovation Centersupport from both the Research Centre of Textiles for Future Fashion at The Hong Kong Polytechnic UniversityThe Hong Kong Jockey Club Charities Trust.
文摘Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2)nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.
基金Project supported in part by the Equipment Development Project for Scientific Research of the Chinese Academy of Sciences(Grant No.YJKYYQ20190049)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the National Key R&D Program of China(Grant No.2022YFA1603904)。
文摘The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-frequency cavity.Utilizing a higher-order mode cavity can effectively reduce the volume loss of the high-frequency cavity.The rotatable dielectric pieces as a tuning mechanism can compensate for the degradation of the form factor of the higher-order mode.Nevertheless,the introduction of dielectric causes additional volume loss.To address these issues,this paper proposes a novel design scheme by adding a central metal rod to the higher-order mode cavity tuned by dielectrics,which improves the performance of the haloscope due to the increased effective volume of the cavity detector.The superiority of the novel design is demonstrated by comparing its simulated performance with previous designs.Moreover,the feasibility of the scheme is verified by the full-wave simulation results of the mechanical design model.
基金the National Natural Science Foundation of China(No.52074349)the Graduate Research Innovation Project of Hunan Province,China(No.CX20230194)。
文摘This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.
基金financial support from National Key R&D Program of China(MoST,2020YFA0711500)the National Natural Science Foundation of China(NSFC,21875114),(NSFC,52303348)+1 种基金111 Project(B18030)“The Fundamental Research Funds for the Central Universities”,Nankai University.
文摘Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金Project supported by the Space Application System of China Manned Space Programthe Youth Innovation Promotion Association,CAS。
文摘This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.