期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environment 被引量:16
1
作者 Dongxing Cao Yanhui Gao Wenhua Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第4期894-911,共18页
A novel oscillator structure, bimorph piezoelectric cantilever beam with two-stepped variable thicknesses,is proposed to improve the energy harvestingperformance of the vibration energy harvester (VEH) under low-frequ... A novel oscillator structure, bimorph piezoelectric cantilever beam with two-stepped variable thicknesses,is proposed to improve the energy harvestingperformance of the vibration energy harvester (VEH) under low-frequency vibration environment. Firstly, the piezoelectric cantilever is segmented to obtain the energy functions based on the Euler-Bernoulli beam assumptions, and the Galerkin approach is utilized to discretize the energy functions. Applying boundary conditions and continuity conditions enforced at separation locations, the electromechanical coupled governing equations for the piezoelectric energy harvesterareintroduced by means of the Lagrange equations. Furthermore, the steady state response expressions are obtained for harmonic base excitations at arbitrary frequencies. Numerical results are computed and the effects ofthe lengths-ratio, thicknesses-ratio,end thicknessand load resistance on the output voltage, harvested power and power density are discussed. Moreover, to verify thecorrectness ofanalytical results, the finite element method (FEM)simulationis also conducted to analyze performance of the proposed VEH, where a good agreement is presented. All the results show thatthe present oscillator structureis moreefficient than the conventional uniform beam structure, specifically, for vibration energy harvesting in low-frequency environment. 展开更多
关键词 vibration energy harvestING piezoelectric CANTILEVER beam Stepped variable thicknesses FINITE ELEMENT method simulation
下载PDF
Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam 被引量:5
2
作者 Dongxing CAO Wei XIA Wenhua HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第12期1777-1790,共14页
Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated... Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester(VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First,the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory.Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 μW of the layer-separated VEH is about3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment. 展开更多
关键词 vibration energy harvester(VEH) layer-separated piezoelectric b eam low frequency broad-bandwidth
下载PDF
Energy harvester array using piezoelectric circular diaphragm for rail vibration 被引量:4
3
作者 Wei Wang Rong-Jin Huang +1 位作者 Chuan-Jun Huang Lai-Feng Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期884-888,共5页
Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper.The electrical characteristics of the functional array consisted of three plates with varie... Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper.The electrical characteristics of the functional array consisted of three plates with varies tip masses are examined under dynamic conditions.With an optimal load resistor of 11 k,an output power of 21.4 m W was generated from the array in parallel connection at 150 Hz under a pre-stress of 0.8 N and a vibration acceleration of9.8 m/s2.Moreover,the broadband energy harvesting using this array still can be realized with different tip masses.Three obvious output power peaks can be obtained in a frequency spectra of 110 Hz to 260 Hz.The results show that using a piezoelectric circular diaphragm array can increase significantly the output of energy compared with the use of a single plate.And by optimizing combination of tip masses with piezoelectric elements in array,the frequency range can be tuned to meet the broadband vibration.This array may possibly be exploited to design the energy harvesting for practical applications such as future high speed rail. 展开更多
关键词 energy harvesting ARRAY piezoelectric material Rail vibration
下载PDF
Analysis on Output Power for Multi-direction Piezoelectric Vibration Energy Harvester 被引量:4
4
作者 刘祥建 陈仁文 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期668-674,共7页
To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments... To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester. 展开更多
关键词 multi-direction vibration energy harvesting piezoelectric transducer output power
下载PDF
Design and Characterization of a Low-Cost Piezoelectric Vibration Energy Harvester with Bulk PZT Film 被引量:2
5
作者 TIAN Xingyao HE Xuefeng 《Instrumentation》 2018年第4期30-38,共9页
To improve the efficiency of MEMS piezoelectric vibration energy harvesters(PVEHs), the bulk lead zirconate titanate(PZT) has been used to substitute the thin film PZT for the higher mechanical-electrical coupling coe... To improve the efficiency of MEMS piezoelectric vibration energy harvesters(PVEHs), the bulk lead zirconate titanate(PZT) has been used to substitute the thin film PZT for the higher mechanical-electrical coupling coefficients. The expensive equipment of micromachining set a high entry barrier on the research of PVEHs with high efficiency. To solve this issue, this paper developed an efficient PVEH with bulk PZT using common precision machining, whose dimensions and electrical outputs are comparable to the MEMS devices. After numerically analyzing the effects of the length ratio of the proof mass to the harvester on the output power, a compact PVEH consisting of a cantilevered uni-morph and a tungsten proof mass was designed. Simulations show that the mechanical damping ratio and the thickness have little effects on the optimized length ratio. By using a uni-morph with the copper structural layer of about 80-90μm and the bulk PZT-5 H layer of 139μm, a low-cost harvester prototype was assembled. The key parameters of the prototype were experimentally identified and compared with the theoretical predictions. Under the harmonic base excitation of 0.4 g(where g = 9.8 m/s^2) at 160 Hz, the maximum output power of the prototype is about 76.7μW, with the normalized power density of about 3.35 mW/cm^3/g^2. Under base excitation of 0.4 g at 159 Hz, the prototype charged a 680μF capacitor from 0 to 4.84 V in about 154 seconds. 展开更多
关键词 energy harvesting vibration piezoelectricITY Bulk Lead Zirconate Titanate Precision Machining
下载PDF
Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
6
作者 Shan Gao Chong-Yang Zhang +1 位作者 Hong-Rui Ao Hong-Yuan Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期507-515,共9页
We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical struc... We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance. 展开更多
关键词 piezoelectric vibration energy harvester beam-type structure ZnO film improved synchronous electric charge extraction circuit
下载PDF
Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting 被引量:7
7
作者 M.HAJHOSSEINI M.RAFEEYAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第8期1053-1066,共14页
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate... A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight. 展开更多
关键词 vibration energy harvesting piezoelectric cantilever beam periodically variable cross-section vibration band gap forced vibration analysis generalized differential quadrature rule (GDQR)
下载PDF
Design and dynamic analysis of integrated architecture for vibration energy harvesting including piezoelectric frame and mechanical amplifier 被引量:3
8
作者 Xiangjian DUAN Dongxing CAO +1 位作者 Xiaoguang LP Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期755-770,共16页
Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applicati... Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system(MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame(PF) and an amplification frame(AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions. 展开更多
关键词 vibration energy harvesting mechanical amplifier piezoelectric frame(PF) amplification frame(AF) variable cross-section beam
下载PDF
Recent advancement of flow-induced piezoelectric vibration energy harvesting techniques:principles,structures,and nonlinear designs 被引量:1
9
作者 Dongxing CAO Junru WANG +2 位作者 Xiangying GUO S.K.LAI Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期959-978,共20页
Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g.... Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g.,turbines and watermills),the micro-power extracting technologies based on the flow-induced vibration(FIV)effect have sparked great concerns by virtue of their prospective applications as a self-power source for the microelectronic devices in recent years.This article aims to conduct a comprehensive review for the FIV working principle and their potential applications for energy harvesting.First,various classifications of the FIV effect for energy harvesting are briefly introduced,such as vortex-induced vibration(VIV),galloping,flutter,and wake-induced vibration(WIV).Next,the development of FIV energy harvesting techniques is reviewed to discuss the research works in the past three years.The application of hybrid FIV energy harvesting techniques that can enhance the harvesting performance is also presented.Furthermore,the nonlinear designs of FIV-based energy harvesters are reported in this study,e.g.,multi-stability and limit-cycle oscillation(LCO)phenomena.Moreover,advanced FIV-based energy harvesting studies for fluid engineering applications are briefly mentioned.Finally,conclusions and future outlook are summarized. 展开更多
关键词 vibration-driven energy harvesting flow-induced vibration(FIV) piezoelectric approach nonlinear design
下载PDF
Design, Modeling and Analysis of Implementing a Multilayer Piezoelectric Vibration Energy Harvesting Mechanism in the Vehicle Suspension 被引量:2
10
作者 Wiwiek Hendrowati Harus Laksana Guntur I. Nyoman Sutantra 《Engineering(科研)》 2012年第11期728-738,共11页
This paper deals with the design, modeling and analysis of implementing a Multilayer Piezoelectric Vibration Energy Harvesting (ML PZT VEH) Mechanism in the vehicle suspension. The principle of work of the proposed ML... This paper deals with the design, modeling and analysis of implementing a Multilayer Piezoelectric Vibration Energy Harvesting (ML PZT VEH) Mechanism in the vehicle suspension. The principle of work of the proposed ML PZT VEH mechanism is reducing the relative motion of the suspension, amplifying the applied force to the PZT by a specific design of mechanism and combining a single layer PZT into multilayer PZT to increase the produced electricity. To maintain the performance of suspension as the original suspension, the ML PZT VEH mechanism is mounted in series with the spring of the suspension. The proposed ML PZT VEH mechanism and its implementation to the vehicle suspension were mathematically modeled. Responses of the vehicle before and after implementing ML PZT VEH mechanism were simulated. The results show the proposed mechanism can produce output voltage of 2.75 and power of 7.17 times bigger than direct mounting to the vehicle suspension. And the simulation result shows that mounting ML PZT VEH mechanism in series with the spring of the vehicle suspension does not change the performance of suspension. 展开更多
关键词 vibration energy harvestING MULTILAYER piezoelectric Force Amplifying MECHANISM Vehicle SUSPENSION
下载PDF
Energy Harvesting Strategy Using Piezoelectric Element Driven by Vibration Method 被引量:1
11
作者 Dong-Gun Kim So-Nam Yun +1 位作者 Young-Bog Ham Jung-Ho Park 《Wireless Sensor Network》 2010年第2期100-107,共8页
This study demonstrates a method for harvesting the electrical power by the piezoelectric actuator from vibration energy. This paper presents the energy harvesting technique using the piezoelectric element of a bimorp... This study demonstrates a method for harvesting the electrical power by the piezoelectric actuator from vibration energy. This paper presents the energy harvesting technique using the piezoelectric element of a bimorph type driven by a geared motor and a vibrator. The geared motor is a type of PWM controlled device that is a combination of an oval shape cam with five gears and a speed controller. When using the geared motor, the piezoelectric element is size of 36L×13W×0.6H. The output voltage characteristics of the piezoelectric element were investigated in terms of the displacement and vibration. When using the vibrator, the electric power harvesting is based on piezoelectric effect and piezoelectric vibrator consists of a magnetic type oscillator, a cantilever, a bimorph actuator and controllers. Low frequency operating technique using piezoelectric vibrator is very important because normal vibration sources in the environment such as building, human body, windmill and ship have low frequency characteristics. We can know from this study results that there are many energy sources such as vibration, wind power and wave power. Also, these can be used to the energy harvesting system using smart device like piezoelectric element. 展开更多
关键词 energy harvester piezoelectric ELEMENT WIND energy vibration energy USN
下载PDF
Power Analysis for Piezoelectric Energy Harvester
12
作者 Wahied G. Ali Sutrisno W. Ibrahim 《Energy and Power Engineering》 2012年第6期496-505,共10页
Piezoelectric energy harvesting technology is used to design battery less microelectronic devices such as wireless sensor nodes. This paper investigates the necessary conditions to enhance the extracted AC electrical ... Piezoelectric energy harvesting technology is used to design battery less microelectronic devices such as wireless sensor nodes. This paper investigates the necessary conditions to enhance the extracted AC electrical power from exciting vibrations energy using piezoelectric materials. The effect of tip masses and their mounting positions are investigated to enhance the system performance. The optimal resistive load is estimated to maximize the power output. Different capacitive loads are tested to store the output energy. The experimental results validated the theoretical analysis and highlighted remarks in the paper. 展开更多
关键词 vibration energy harvestING piezoelectric Materials Power Analysis RESONANT FREQUENCY
下载PDF
Disk Bimorph-Type Piezoelectric Energy Harvester
13
作者 V. Tsaplev R. Konovalov K. Abbakumov 《Journal of Power and Energy Engineering》 2015年第4期63-68,共6页
The study of the experimental investigation of a disk-type piezoelectric energy harvester presented. The harvester contains disk bimorph piezoceramic element of the umbrella form and contains two disk PZT plates. The ... The study of the experimental investigation of a disk-type piezoelectric energy harvester presented. The harvester contains disk bimorph piezoceramic element of the umbrella form and contains two disk PZT plates. The element is excited at the base point at its center. The element is supplied by a loading ring mass to decrease its resonance frequency. The dependences of the vibration displacement along the radii of the bimorph and the ring mass from the frequency of excitation are presented and the output voltage frequency response is also presented as well. The idle mode and the load duty are investigated. The value of the internal resistance of the harvester is obtained using the load characteristic. The piezoelectric specific power is estimated experimentally. 展开更多
关键词 piezoelectric energy harvester UMBRELLA BIMORPH Plate Amplitude-Frequency Characteristic FLEXURAL vibration Specific Power Output Voltage
下载PDF
Finite Element Analysis on a Square Canister Piezoelectric Energy Harvester in Asphalt Pavement
14
作者 Hongbing Wang Chunhua Sun 《World Journal of Engineering and Technology》 2016年第2期361-373,共13页
A novel square canister piezoelectric energy harvester was proposed for harvesting energy from asphalt pavement. The square of the harvester was of great advantage to compose the harvester array for harvesting energy ... A novel square canister piezoelectric energy harvester was proposed for harvesting energy from asphalt pavement. The square of the harvester was of great advantage to compose the harvester array for harvesting energy from the asphalt pavement in a large scale. The open circuit voltage of the harvester was obtained by the piezoelectric constant d<sub>33</sub> of the piezoelectric ceramic. The harvester is different from the cymbal harvester which works by the piezoelectric constant d<sub>31</sub>. The finite element model of the single harvester was constructed. The open circuit voltage increased with increase of the outer load. The finite element model of the single harvester buried in the asphalt pavement was built. The open circuit voltage, the deformation difference percent and the stress of the ceramic of the harvester were obtained with different buried depth. The open circuit voltage decreased when the buried depth was increased. The proper buried depth of the harvester should be selected as 30 - 50 mm. The effects of structure parameters on the open circuit voltage were gotten. The output voltage about 64.442 V could be obtained from a single harvester buried under 40 mm pavement at the vehicle load of 0.7 MPa. 0.047 mJ electric energy could be gotten in the harvester. The output power was about 0.705 mW at 15 Hz vehicle load frequency. 展开更多
关键词 Asphalt Pavement vibration energy Square Canister piezoelectric energy harvester Finite Element Method
下载PDF
Complete Charging for Piezoelectric Energy Harvesting System 被引量:2
15
作者 樊康旗 徐春辉 王卫东 《Transactions of Tianjin University》 EI CAS 2014年第6期407-414,共8页
Under an in-phase assumption, the complete charging for an energy harvesting system is studied, which consists of a piezoelectric energy harvester(PEH), a bridge rectifier, a filter capacitor, a switch, a controller a... Under an in-phase assumption, the complete charging for an energy harvesting system is studied, which consists of a piezoelectric energy harvester(PEH), a bridge rectifier, a filter capacitor, a switch, a controller and a rechargeable battery. For the transient charging, the results indicate that the voltage across the filter capacitor increases as the charging proceeds, which is consistent with that reported in the literature. However, a new finding shows that the charging rate and energy harvesting efficiency decrease over time after their respective peak values are acquired.For the steady-state charging, the results reveal that the energy harvesting efficiency can be adjusted by altering the critical charging voltage that controls the transition of the system. The optimal energy harvesting efficiency is limited by the optimal efficiency of the transient charging. Finally, the relationship between the critical charging voltage and the equivalent resistance of the controller and rechargeable battery is established explicitly. 展开更多
关键词 energy harvestING mechanical vibration piezoelectric energy harvester CHARGING rate energy harvestingefficiency
下载PDF
Experiment and performance analysis of serpentine-shaped cantilever beam for pipeline vibration-based piezoelectric energy harvester prototype development
16
作者 Wan Nabila Mohd Fairuz Illani Mohd Nawi +1 位作者 Mohamad Radzi Ahmad Ramani Kannan 《Clean Energy》 EI CSCD 2024年第4期111-134,共24页
Pipelines produce vibrations during fluid or gas transportation.These vibrations are less likely to cause structural failure as they exist with a small magnitude and can be harvested into useful energy.This paper pres... Pipelines produce vibrations during fluid or gas transportation.These vibrations are less likely to cause structural failure as they exist with a small magnitude and can be harvested into useful energy.This paper presents a study on the piezoelectric energy-harvesting method converting mechanical energy from pipeline vibration into electrical energy.The performance of the serpentine-shaped piezoelectric cantilever beam was observed to check whether the design can produce the highest output voltage within the allowable vibration region of the pipeline from 10 to 300 Hz through finite element analysis using COMSOL Multiphysics software(Supplementary Material).In addition,this study investigates the energy-harvesting potential of the proposed design under real pipeline vibration conditions through a lab vibration test.The harvested energy output is evaluated based on various vibration frequencies and amplitudes,which gives an idea of the device and its performance under different operating conditions.The experiment result shows that the energy harvester produced an open-circuit voltage of 10.28-15.45 V with 1 g of vibration acceleration.The results of this research will contribute to the development of efficient piezoelectric energy harvesters adapted for pipeline environments. 展开更多
关键词 piezoelectric energy harvester unimorph piezoelectric cantilever beam pipeline vibration energy harvesting COMSOL finite element modelling
原文传递
Energy Harvesting From Sea Waves With Consideration of Airy and JONSWAP Theory and Optimization of Energy Harvester Parameters 被引量:2
17
作者 Hadi Mirab Reza Fathi Vahid Jahangiri Mir Mohammad Ettefagh Reza Hassannejad 《Journal of Marine Science and Application》 CSCD 2015年第4期440-449,共10页
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electri... One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power. 展开更多
关键词 energy harvesting sea waves JONSWAP Airy wave model piezoelectric material beam vibration simulated annealing algorithm
下载PDF
Suppressing friction-induced stick-slip vibration through a linear PZT-based absorber and energy harvester 被引量:1
18
作者 Wei CHEN Jiliang MO +2 位作者 Huajiang OUYANG Jing ZHAO Zaiyu XIANG 《Friction》 SCIE EI CAS CSCD 2024年第7期1449-1468,共20页
In this paper,a PZT(lead zirconate titanate)-based absorber and energy harvester(PAEH)is used for passive control of friction-induced stick-slip vibration in a friction system.Its stability condition coupled with PAEH... In this paper,a PZT(lead zirconate titanate)-based absorber and energy harvester(PAEH)is used for passive control of friction-induced stick-slip vibration in a friction system.Its stability condition coupled with PAEH is analytically derived,whose efficiency is then demonstrated by numerical simulation.The results show that the structural parameters of the PAEH can significantly affect the system stability,which increases with the mass ratio between the PAEH and the primary system,but first increases and then decreases with the natural frequency ratio between the PAEH and the primary system.The impacts of the electric parameters of the PAEH on the system stability are found to be insignificant.In addition,the PAEH can effectively suppress the stick-slip limit cycle magnitude in a wide working parameter range;however,it does not function well for friction systems in all the working conditions.The stick-slip vibration amplitude can be increased in the case of a large loading(normal)force.Finally,an experiment on a tribo-dynamometer validates the findings of the theoretical study,in which the vibration reduction and energy harvesting performance of the PAEH is fully demonstrated. 展开更多
关键词 FRICTION STICK-SLIP vibration control ABSORBER piezoelectric energy harvesting
原文传递
Theoretical and experimental investigations of multibifurcated piezoelectric energy harvesters with coupled bending and torsional vibrations
19
作者 Yu Chen Zhichun Yang +3 位作者 Zhaolin Chen Kui Li Le Wang Shengxi Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第5期147-158,I0004,共13页
This paper investigates a multibifurcated piezoelectric energy harvester(MBPEH)with coupled bending and torsional vibrations to enhance energy harvesting performance.A theoretical model is established and verified by ... This paper investigates a multibifurcated piezoelectric energy harvester(MBPEH)with coupled bending and torsional vibrations to enhance energy harvesting performance.A theoretical model is established and verified by the finite element method(FEM)and experimental results.The results show that the theoretical results show good performance with the FEM and experiments in both the output amplitude and response frequency bands.In addition,the multimodal response mechanism of the MBPEH is revealed.The influence of the bifurcated angle and the length of the bifurcated beams on the energy harvesting performance are deeply analyzed.Furthermore,it is revealed that the asymmetry of the bifurcated beams is conducive to energy harvesting.The Y-shaped(two bifurcated beams)MBPEH works in bending and axial mode(BAM),and bending and torsional mode(BTM)are compared,and the results show that the Y-shaped BTM-MBPEH has a better energy harvesting performance in mediumfrequency and lowfrequency bands. 展开更多
关键词 piezoelectric energy harvesting Torsional vibration Bifurcated cantilever beam MULTIMODE
原文传递
Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester
20
作者 X.Z.Jiang Y.C Li +1 位作者 J.Wang J.C.Li 《International Journal of Smart and Nano Materials》 SCIE EI 2014年第3期152-168,共17页
Over the past few decades,wireless sensor networks have been widely used in the field of structure health monitoring of civil,mechanical,and aerospace systems.Currently,most wireless sensor networks are battery-powere... Over the past few decades,wireless sensor networks have been widely used in the field of structure health monitoring of civil,mechanical,and aerospace systems.Currently,most wireless sensor networks are battery-powered and it is costly and unsustainable for maintenance because of the requirement for frequent battery replacements.As an attempt to address such issue,this article theoretically and experimentally studies a compression-based piezoelectric energy harvester using a multilayer stack configuration,which is suitable for civil infrastructure system applications where large compressive loads occur,such as heavily vehicular loading acting on pavements.In this article,we firstly present analytical and numerical modeling of the piezoelectric multilayer stack under axial compressive loading,which is based on the linear theory of piezoelectricity.A two-degree-of-freedom electromechanical model,considering both the mechanical and electrical aspects of the proposed harvester,was developed to characterize the harvested electrical power under the external electrical load.Exact closed-form expressions of the electromechanical models have been derived to analyze the mechanical and electrical properties of the proposed harvester.The theoretical analyses are validated through several experiments for a test prototype under harmonic excitations.The test results exhibit very good agreement with the analytical analyses and numerical simulations for a range of resistive loads and input excitation levels. 展开更多
关键词 vibration energy harvesting piezoelectric 2-DOF electromechanical model large-force LOW-FREQUENCY
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部