Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal...Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.展开更多
The power density of electronic components grows continuously,and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability,reliability and service life.Therefore,ac...The power density of electronic components grows continuously,and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability,reliability and service life.Therefore,achieving efficient cooling in limited space has become a key problem in updating electronic devices with high performance and high integration.Two-phase immersion is a novel cooling method.The computational fluid dynamics(CFD)method is used to investigate the cooling performance of two-phase immersion cooling on high-power electronics.The two-dimensional CFD model is utilized by the volume of fluid(VOF)method and Reynolds StressModel.Lee’s model was employed to calculate the phase change rate.The heat transfer coefficient along the heatedwalls and the shear-lift force on bubbles are calculated.The simulation data are verified with the literature results.The cooling performance of different coolants has been studied.The results indicate that the boiling heat transfer coefficient can be enhanced by using a low boiling point coolant.The methanol is used as the cooling medium for further research.In addition,the mass flow rate and inlet temperature are investigated to assess the thermal performance of twophase immersion cooling.The average temperature of the high-power electronics is 80℃,and the temperature difference can be constrained to 8℃.Meanwhile,the convective heat transfer coefficient reaches 2740 W/(m2・℃)when the inlet temperature is 50℃,and the mass flow rate is 0.3 kg/s.In conclusion,the results demonstrated that two-phase immersion cooling has provided an effective method for the thermal management of high-power electronics.展开更多
Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Ch...Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.展开更多
The face velocities of the high efficiency particulate air filters and the ultra low penetration airfilters in fan filter units (FFUs) have large relative standard deviation and turbulivity. It seriously affects the ...The face velocities of the high efficiency particulate air filters and the ultra low penetration airfilters in fan filter units (FFUs) have large relative standard deviation and turbulivity. It seriously affects the unidirectivity of the flow in the unidirectional flow clean zone and cleanroom. The cross contamination in this kind of unidirectional flow area is hardly controlled. It is significant to find optional method for keeping the face velocity uniformity of FFU and reducing the face velocity turbulivity of FFU, furthermore, to keep the cleanliness level under FFUs. The normal and easy method is to add flow rectifiers under filters. FFUs with various flow rectifiers have been tested. The uniformity and turbulivity of facevelocity under the FFU are presented in this paper. The influence of the facevelocity uniformity and turbulivity on the contamination boundary of the unidirectional flow is studiedas well.展开更多
On the basis of detailed analysis of a novel harmonic counteracting method which can be used to effectively compensate the supply line harmonic currents of a passive single phase diode bridge rectifier, this paper pr...On the basis of detailed analysis of a novel harmonic counteracting method which can be used to effectively compensate the supply line harmonic currents of a passive single phase diode bridge rectifier, this paper presents two simpler single phase diode bridge rectifier configurations and their alternatives which can achieve low supply line current THD(total harmonic distortion) too. Moreover, this paper also proposes a few passive hamonic counteracting networks for multi single phase rectifiers which are connected in parallel.展开更多
Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain met...Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.展开更多
To improve the characteristics of a diamond-like carbon (DLC) film, Ti-containing amorphous hydrogenated carbon thin films were deposited on sus304 stainless steel substrates by high-power plasma-sputtering with tit...To improve the characteristics of a diamond-like carbon (DLC) film, Ti-containing amorphous hydrogenated carbon thin films were deposited on sus304 stainless steel substrates by high-power plasma-sputtering with titanium metal as the solid plasma source in a mixed ArC2H2 atmosphere. The films were fabricated to obtain a multilayered structure of Ti/TiC/DLC gradient for improving adhesion and reducing residual stress. The effects of substrate bias and target-substrate distance on the films' properties were studied by glow discharge spectroscope, X-ray diffractometer, Raman spectroscope, nanoindenter, and a pin-on-disk tribometer. The results indicate that the films possess superior adhesive strength and toughness.展开更多
Due to low investment cost and high reliability,a new scheme called DR-HVDC(Diode Rectifier based HVDC)transmission was recently proposed for grid integration of large offshore wind farms.However,in this scheme,the ap...Due to low investment cost and high reliability,a new scheme called DR-HVDC(Diode Rectifier based HVDC)transmission was recently proposed for grid integration of large offshore wind farms.However,in this scheme,the application of conventional control strategies for stability operation face several challenges due to the uncontrollability of the DR.In this paper,a coordinated control strategy of offshore wind farms using the DR-HVDC transmission technology to connect with the onshore grid,is investigated.A novel coordinated control strategy for DR-HVDC is proposed based on the analysis of the DC current control ability of the full-bridge-based modular multilevel converter(FB-MMC)at the onshore station and the input and output characteristics of the diode rectifier at the offshore.Considering the characteristics of operation stability and decoupling between reactive power and active power,a simplified design based on double-loop droop control for offshore AC voltage is proposed after power flow and voltage–current(I–V)characteristics of the offshore wind farm being analyzed.Furthermore,the impact of onshore AC fault to offshore wind farm is analyzed,and a fast fault detection and protection strategy without relying on communication is proposed.Case studies carried out by PSCAD/EMTDC verify the effectiveness of the proposed control strategy for the start up,power fluctuation,and onshore and offshore fault conditions.展开更多
This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are...This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termi- nation, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length.展开更多
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t...The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.展开更多
An improved structure of Schottky rectifier, called a trapezoid mesa trench metal oxide semiconductor (MOS) barrier Schottky rectifier (TM-TMBS), is proposed and studied by two-dimensional numerical simulations. B...An improved structure of Schottky rectifier, called a trapezoid mesa trench metal oxide semiconductor (MOS) barrier Schottky rectifier (TM-TMBS), is proposed and studied by two-dimensional numerical simulations. Both forward and especially better reverse I-V characteristics, including lower leakage current and higher breakdown voltage, are demonstrated by comparing our proposed TM-TMBS with a regular trench MOS barrier Schottky rectifier (TMBS) as well as a conventional planar Schottky barrier diode rectifier. Optimized device parameters corresponding to the requirement for high breakdown voltage are given. With optimized parameters, TM-TMBS attains a breakdown voltage of 186 V, which is 6.3% larger than that of the optimized TMBS, and a leakage current of 4.3×10^-6 A/cm2, which is 26% smaller than that of the optimized TMBS. The relationship between optimized breakdown voltage and some device parameters is studied. Explanations and design rules are given according to this relationship.展开更多
A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of ...A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result.展开更多
The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study.Three geometrical parameters,i.e.,mesa height,mesa angle and ...The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study.Three geometrical parameters,i.e.,mesa height,mesa angle and mesa bottom corner,are investigated by numerical simulation.The simulation results show that a deep mesa height,a small mesa angle and a smooth mesa bottom(without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution.Moreover,an optimized mesa structure without sub-trench(mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated.A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm^2 are obtained from the fabricated diode with a 30-μm thick N^- epi-layer,corresponding to 85% of the ideal parallel-plane value.The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge.展开更多
The Vienna rectifier with unbalanced input voltage and load transient is analyzed.A nonlinear control strategy for Vienna rectifier under unbalanced input is proposed.From the view of positive and negative sequence co...The Vienna rectifier with unbalanced input voltage and load transient is analyzed.A nonlinear control strategy for Vienna rectifier under unbalanced input is proposed.From the view of positive and negative sequence components,the proposed nonlinear control strategy suppresses the twice frequency ripple and guarantees the dynamic response characteristic at the same time.Thanks to the proposed nonlinear control strategy,the DC bus capacitor can be reduced a lot since the voltage ripple and drop can be suppressed.A 10 kW Vienna rectifier is built to verify the proposed control strategy.After applying the proposed nonlinear control strategy,the voltage ripple is only7 V and decreases over 75%over the traditional PI control when the unbalanced degree is 20%.The voltage drop can be reduced about 80%than former control strategy which is helpful to reduce the DC bus capacitor and achieve higher power density.The volume of the capacitor can be reduced by 83.3%with the new control method.展开更多
The aim of this study was to compare the effects of d, l-Sotalol and dSotalol on the delayed rectifier K+ outward current in the presence of isoproterenol at different concentrations. Time-dependent delayed rectifier...The aim of this study was to compare the effects of d, l-Sotalol and dSotalol on the delayed rectifier K+ outward current in the presence of isoproterenol at different concentrations. Time-dependent delayed rectifier K+ outward currents were measured in isolated guinea pig single myocytes using the whole-cell configuration of the patch-clamp technique. Currents were measured in response to 300 ms depolarizing pulses from a holding potential of -40 mV in three experimental protocols [control, isoproterenol (10^(9)mol/L - 10^(-6) mol/L ), and isoproterenol (10^(-9)mol/L - 10^(-6)mol/L ) plus either d, l-Sotalol (10^(-4) mol/L) or d-Sotalol (10^(-4) mol/L)]. IK tail currents were measured upon repolarization to -40 mV. It was found that Ik was significantly amplified in the presence. of isoproterenol (10^(-9) mol/L- 10^(-6) mol/L) plus d-Sotalol. At 10-8 mol/L isoproterenol, Ik was increased by 92. 7%±17. 1 % (P<0. 05) and 54. 3 %±13. 4 % after d-Sotalol addition (P<0. 05). In contrast, d, l-Sotalol completely conteracted the increase of iK by isoproterenol (<10^(-8) mol/L), and compared to control, Ic was decreased by 35. 6 % ±8. 1% at 10^(-8) mol/L isoproterenol plus d, l-Sotalol (P<0. 05). It is concluded that the β-adrenergic blocking property of d, l-Sotalol but not that of dSotalol maintains the delayed rectifier K+ outward current blockade in the presence of isoproterenol in guinea pig myocytes. This might contribute to a superior antiarrhythmic efficacy as compared to d-Sotalol.展开更多
This paper proposes a double epi-layers 4H-SiC junction barrier Schottky rectifier (JBSR) with embedded P layer (EPL) in the drift region. The structure is characterized by the P-type layer formed in the n-type dr...This paper proposes a double epi-layers 4H-SiC junction barrier Schottky rectifier (JBSR) with embedded P layer (EPL) in the drift region. The structure is characterized by the P-type layer formed in the n-type drift layer by epitaxial overgrowth process. The electric field and potential distribution are changed due to the buried P-layer, resulting in a high breakdown voltage (BV) and low specific on-resistance (Ron,sp). The influences of device parameters, such as the depth of the embedded P+ regions, the space between them and the doping concentration of the drift region, etc., on BV and Ron,sp are investigated by simulations, which provides a particularly useful guideline for the optimal design of the device. The results indicate that BV is increased by 48.5% and Baliga's figure of merit (BFOM) is increased by 67.9% compared to a conventional 4H-SiC JBSR.展开更多
Thermal management is one of the key technologies for high-power Light emitting diode(LED)entering into the general illuminating field.Successful thermal management depends on optimal packaging structure and selected ...Thermal management is one of the key technologies for high-power Light emitting diode(LED)entering into the general illuminating field.Successful thermal management depends on optimal packaging structure and selected packaging materials.In this paper,the aluminum is employed as a substrate of LED,3×3 array chips are placed on the substrate,heat dissipation performance is simulated using finite element analysis(FEA)software,analyzed are the influences on the temperature of the chip with different convection coefficient,and optical properties are simulated using optical analysis software.The results show that the packaging structure can not only effectually improve the thermal performance of high-power LED array but also increase the light extraction efficiency.展开更多
The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the devic...The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the device simulation, a mathematical model is built to get a more in-depth insight into this phenomenon. The theoretical studies are verified by the transmission-line-pulsing (TLP) test results of the modified DTSCR structure, which is realized in a 65-nm complementary metal-oxide-semiconductor (CMOS) process. The detailed analysis of the physical mechanism is used to provide predictions as the DTSCR-based protection scheme is required. In addition, a method is also presented to achieve the tradeoff between the leakage and trigger voltage in DTSCR.展开更多
To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k...To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k W continuous wave(CW) klystron operating at frequency of 650-MHz has been designed. The results of beam–wave interaction simulation with several different codes are presented. The efficiency is optimized to be 65% with a second harmonic cavity in three-dimensional(3D) particle-in-cell code CST. The effect of cavity frequency error and mismatch load on efficiency of klystron have been investigated. The design and cold test of reentrant cavities are described, which meet the requirements of RF section design. So far, the manufacturing and high-power test of the first klystron prototype have been completed.When the gun operated at DC voltage of 80 k V and current of 15.4 A, the klystron peak power reached 804 k W with output efficiency of about 65.3% at 40% duty cycle. The 1-d B bandwidth is ±0.8 MHZ. Due to the crack of ceramic window, the CW power achieved about 700 kW. The high-power test results are in good agreement with 3D simulation.展开更多
In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validit...In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validity of the analysis and the feasibility of the proposed control method a set of simulation tests have been conducted using Matlab/Simulink. The simulation results show that compared to the conventional PI controller, the SMC can reduce drastically the three-level rectifier’s voltage fluctuation and improve the dynamic response of dc-bus significantly.展开更多
基金financially supported by the Shenzhen Science and Technology Program (JCYJ20200109105805902,JCYJ20220818095805012)the National Natural Science Foundation of China (22208221,22178221,42377487)+2 种基金the Scientific and Technological Plan of Guangdong Province (2019B090905005,2019B090911004)the Natural Science Foundation of Guangdong Province (2021A1515110751)the Guangdong Basic and Applied Basic Research Foundation (2022A1515110477,2021B1515120004)。
文摘Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.
基金support from the Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province,China(Grant No.2021MFRSE-C01)the Natural Science Foundation of Gansu Province,China(No.22JR5RA269)Fujian Province Science Foundation for Youths,China(No.2020305069).
文摘The power density of electronic components grows continuously,and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability,reliability and service life.Therefore,achieving efficient cooling in limited space has become a key problem in updating electronic devices with high performance and high integration.Two-phase immersion is a novel cooling method.The computational fluid dynamics(CFD)method is used to investigate the cooling performance of two-phase immersion cooling on high-power electronics.The two-dimensional CFD model is utilized by the volume of fluid(VOF)method and Reynolds StressModel.Lee’s model was employed to calculate the phase change rate.The heat transfer coefficient along the heatedwalls and the shear-lift force on bubbles are calculated.The simulation data are verified with the literature results.The cooling performance of different coolants has been studied.The results indicate that the boiling heat transfer coefficient can be enhanced by using a low boiling point coolant.The methanol is used as the cooling medium for further research.In addition,the mass flow rate and inlet temperature are investigated to assess the thermal performance of twophase immersion cooling.The average temperature of the high-power electronics is 80℃,and the temperature difference can be constrained to 8℃.Meanwhile,the convective heat transfer coefficient reaches 2740 W/(m2・℃)when the inlet temperature is 50℃,and the mass flow rate is 0.3 kg/s.In conclusion,the results demonstrated that two-phase immersion cooling has provided an effective method for the thermal management of high-power electronics.
基金Project (51175095) supported by the National Natural Science Foundation of ChinaProjects (10251009001000001,9151009001000020) supported by the Natural Science Foundation of Guangdong Province,ChinaProject (20104420110001) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.
文摘The face velocities of the high efficiency particulate air filters and the ultra low penetration airfilters in fan filter units (FFUs) have large relative standard deviation and turbulivity. It seriously affects the unidirectivity of the flow in the unidirectional flow clean zone and cleanroom. The cross contamination in this kind of unidirectional flow area is hardly controlled. It is significant to find optional method for keeping the face velocity uniformity of FFU and reducing the face velocity turbulivity of FFU, furthermore, to keep the cleanliness level under FFUs. The normal and easy method is to add flow rectifiers under filters. FFUs with various flow rectifiers have been tested. The uniformity and turbulivity of facevelocity under the FFU are presented in this paper. The influence of the facevelocity uniformity and turbulivity on the contamination boundary of the unidirectional flow is studiedas well.
文摘On the basis of detailed analysis of a novel harmonic counteracting method which can be used to effectively compensate the supply line harmonic currents of a passive single phase diode bridge rectifier, this paper presents two simpler single phase diode bridge rectifier configurations and their alternatives which can achieve low supply line current THD(total harmonic distortion) too. Moreover, this paper also proposes a few passive hamonic counteracting networks for multi single phase rectifiers which are connected in parallel.
基金Project supported by the National Key Laboratory Foundation,China(Grant No.9140C530103110C5301)
文摘Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.
文摘To improve the characteristics of a diamond-like carbon (DLC) film, Ti-containing amorphous hydrogenated carbon thin films were deposited on sus304 stainless steel substrates by high-power plasma-sputtering with titanium metal as the solid plasma source in a mixed ArC2H2 atmosphere. The films were fabricated to obtain a multilayered structure of Ti/TiC/DLC gradient for improving adhesion and reducing residual stress. The effects of substrate bias and target-substrate distance on the films' properties were studied by glow discharge spectroscope, X-ray diffractometer, Raman spectroscope, nanoindenter, and a pin-on-disk tribometer. The results indicate that the films possess superior adhesive strength and toughness.
基金supported by State Grid Science and Technology Project“Study on Key Technologies of Large Scale Offshore Wind Power Integrating with Onshore Grid”(4000-202055045A-0-0-00)
文摘Due to low investment cost and high reliability,a new scheme called DR-HVDC(Diode Rectifier based HVDC)transmission was recently proposed for grid integration of large offshore wind farms.However,in this scheme,the application of conventional control strategies for stability operation face several challenges due to the uncontrollability of the DR.In this paper,a coordinated control strategy of offshore wind farms using the DR-HVDC transmission technology to connect with the onshore grid,is investigated.A novel coordinated control strategy for DR-HVDC is proposed based on the analysis of the DC current control ability of the full-bridge-based modular multilevel converter(FB-MMC)at the onshore station and the input and output characteristics of the diode rectifier at the offshore.Considering the characteristics of operation stability and decoupling between reactive power and active power,a simplified design based on double-loop droop control for offshore AC voltage is proposed after power flow and voltage–current(I–V)characteristics of the offshore wind farm being analyzed.Furthermore,the impact of onshore AC fault to offshore wind farm is analyzed,and a fast fault detection and protection strategy without relying on communication is proposed.Case studies carried out by PSCAD/EMTDC verify the effectiveness of the proposed control strategy for the start up,power fluctuation,and onshore and offshore fault conditions.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61234006)
文摘This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termi- nation, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length.
文摘The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.
基金Project supported by the International Research Training Group "Materials and Concepts for Interconnects and Nanosystems"
文摘An improved structure of Schottky rectifier, called a trapezoid mesa trench metal oxide semiconductor (MOS) barrier Schottky rectifier (TM-TMBS), is proposed and studied by two-dimensional numerical simulations. Both forward and especially better reverse I-V characteristics, including lower leakage current and higher breakdown voltage, are demonstrated by comparing our proposed TM-TMBS with a regular trench MOS barrier Schottky rectifier (TMBS) as well as a conventional planar Schottky barrier diode rectifier. Optimized device parameters corresponding to the requirement for high breakdown voltage are given. With optimized parameters, TM-TMBS attains a breakdown voltage of 186 V, which is 6.3% larger than that of the optimized TMBS, and a leakage current of 4.3×10^-6 A/cm2, which is 26% smaller than that of the optimized TMBS. The relationship between optimized breakdown voltage and some device parameters is studied. Explanations and design rules are given according to this relationship.
文摘A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61234006)the Open Foundation of the State Key Laboratory of Electronic Thin Films and Integrated Devices,China(Grant No.KFJJ201301)the National Science and Technology Major Project of the Ministry of Science and Technology,China(Grant No.2013ZX02305-003)
文摘The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study.Three geometrical parameters,i.e.,mesa height,mesa angle and mesa bottom corner,are investigated by numerical simulation.The simulation results show that a deep mesa height,a small mesa angle and a smooth mesa bottom(without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution.Moreover,an optimized mesa structure without sub-trench(mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated.A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm^2 are obtained from the fabricated diode with a 30-μm thick N^- epi-layer,corresponding to 85% of the ideal parallel-plane value.The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge.
基金supported in part by the National Natural Science Foundation of China (Nos. 51777093 ,51722702)
文摘The Vienna rectifier with unbalanced input voltage and load transient is analyzed.A nonlinear control strategy for Vienna rectifier under unbalanced input is proposed.From the view of positive and negative sequence components,the proposed nonlinear control strategy suppresses the twice frequency ripple and guarantees the dynamic response characteristic at the same time.Thanks to the proposed nonlinear control strategy,the DC bus capacitor can be reduced a lot since the voltage ripple and drop can be suppressed.A 10 kW Vienna rectifier is built to verify the proposed control strategy.After applying the proposed nonlinear control strategy,the voltage ripple is only7 V and decreases over 75%over the traditional PI control when the unbalanced degree is 20%.The voltage drop can be reduced about 80%than former control strategy which is helpful to reduce the DC bus capacitor and achieve higher power density.The volume of the capacitor can be reduced by 83.3%with the new control method.
文摘The aim of this study was to compare the effects of d, l-Sotalol and dSotalol on the delayed rectifier K+ outward current in the presence of isoproterenol at different concentrations. Time-dependent delayed rectifier K+ outward currents were measured in isolated guinea pig single myocytes using the whole-cell configuration of the patch-clamp technique. Currents were measured in response to 300 ms depolarizing pulses from a holding potential of -40 mV in three experimental protocols [control, isoproterenol (10^(9)mol/L - 10^(-6) mol/L ), and isoproterenol (10^(-9)mol/L - 10^(-6)mol/L ) plus either d, l-Sotalol (10^(-4) mol/L) or d-Sotalol (10^(-4) mol/L)]. IK tail currents were measured upon repolarization to -40 mV. It was found that Ik was significantly amplified in the presence. of isoproterenol (10^(-9) mol/L- 10^(-6) mol/L) plus d-Sotalol. At 10-8 mol/L isoproterenol, Ik was increased by 92. 7%±17. 1 % (P<0. 05) and 54. 3 %±13. 4 % after d-Sotalol addition (P<0. 05). In contrast, d, l-Sotalol completely conteracted the increase of iK by isoproterenol (<10^(-8) mol/L), and compared to control, Ic was decreased by 35. 6 % ±8. 1% at 10^(-8) mol/L isoproterenol plus d, l-Sotalol (P<0. 05). It is concluded that the β-adrenergic blocking property of d, l-Sotalol but not that of dSotalol maintains the delayed rectifier K+ outward current blockade in the presence of isoproterenol in guinea pig myocytes. This might contribute to a superior antiarrhythmic efficacy as compared to d-Sotalol.
基金Project supported by the 13115 Innovation Engineering of Shaanxi Province of China(Grant No.2008ZDKG-30)
文摘This paper proposes a double epi-layers 4H-SiC junction barrier Schottky rectifier (JBSR) with embedded P layer (EPL) in the drift region. The structure is characterized by the P-type layer formed in the n-type drift layer by epitaxial overgrowth process. The electric field and potential distribution are changed due to the buried P-layer, resulting in a high breakdown voltage (BV) and low specific on-resistance (Ron,sp). The influences of device parameters, such as the depth of the embedded P+ regions, the space between them and the doping concentration of the drift region, etc., on BV and Ron,sp are investigated by simulations, which provides a particularly useful guideline for the optimal design of the device. The results indicate that BV is increased by 48.5% and Baliga's figure of merit (BFOM) is increased by 67.9% compared to a conventional 4H-SiC JBSR.
基金Key Scientific and Technological Research Projects of Henan Province(072102240027)Dr Foundation of Henan Polytechnic University(648602)Postgraduate Degree Thesis Innovation Foundation of Henan Polytechnic University(644005)
文摘Thermal management is one of the key technologies for high-power Light emitting diode(LED)entering into the general illuminating field.Successful thermal management depends on optimal packaging structure and selected packaging materials.In this paper,the aluminum is employed as a substrate of LED,3×3 array chips are placed on the substrate,heat dissipation performance is simulated using finite element analysis(FEA)software,analyzed are the influences on the temperature of the chip with different convection coefficient,and optical properties are simulated using optical analysis software.The results show that the packaging structure can not only effectually improve the thermal performance of high-power LED array but also increase the light extraction efficiency.
基金Project supported by the Beijing Municipal Natural Science Foundation,China(Grant No.4162030)the National Science and Technology Major Project of China(Grant No.2013ZX02303002)
文摘The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the device simulation, a mathematical model is built to get a more in-depth insight into this phenomenon. The theoretical studies are verified by the transmission-line-pulsing (TLP) test results of the modified DTSCR structure, which is realized in a 65-nm complementary metal-oxide-semiconductor (CMOS) process. The detailed analysis of the physical mechanism is used to provide predictions as the DTSCR-based protection scheme is required. In addition, a method is also presented to achieve the tradeoff between the leakage and trigger voltage in DTSCR.
基金Project supported by Yifang Wang’s Science Studio of the Ten Thousand Talents Project。
文摘To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k W continuous wave(CW) klystron operating at frequency of 650-MHz has been designed. The results of beam–wave interaction simulation with several different codes are presented. The efficiency is optimized to be 65% with a second harmonic cavity in three-dimensional(3D) particle-in-cell code CST. The effect of cavity frequency error and mismatch load on efficiency of klystron have been investigated. The design and cold test of reentrant cavities are described, which meet the requirements of RF section design. So far, the manufacturing and high-power test of the first klystron prototype have been completed.When the gun operated at DC voltage of 80 k V and current of 15.4 A, the klystron peak power reached 804 k W with output efficiency of about 65.3% at 40% duty cycle. The 1-d B bandwidth is ±0.8 MHZ. Due to the crack of ceramic window, the CW power achieved about 700 kW. The high-power test results are in good agreement with 3D simulation.
文摘In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validity of the analysis and the feasibility of the proposed control method a set of simulation tests have been conducted using Matlab/Simulink. The simulation results show that compared to the conventional PI controller, the SMC can reduce drastically the three-level rectifier’s voltage fluctuation and improve the dynamic response of dc-bus significantly.