We applied the 3D first arrival travel time tomography method to the Anhui active seismic source experiment data,and obtained the imaging of the upper crust velocity structure beneath the Yangtze River from Ma'ans...We applied the 3D first arrival travel time tomography method to the Anhui active seismic source experiment data,and obtained the imaging of the upper crust velocity structure beneath the Yangtze River from Ma'anshan,Tongling to Anqing. Data fitting reveals the tomographic model fits the data with uncertainties, without overfitting, and with a minimum of complexity. The tomographic result shows an obvious heterogeneous upper crust which consists of a series of uplifts and depression basins. The velocity model and region imply that this region has experienced crustal uplift and extensional tectonism with concomitant magmatism since the Cenozoic.展开更多
基金jointly sponsored by the National Natural Science Foundation of China(41574084)the Spark Program of Earthquake Sciences(XH15059)
文摘We applied the 3D first arrival travel time tomography method to the Anhui active seismic source experiment data,and obtained the imaging of the upper crust velocity structure beneath the Yangtze River from Ma'anshan,Tongling to Anqing. Data fitting reveals the tomographic model fits the data with uncertainties, without overfitting, and with a minimum of complexity. The tomographic result shows an obvious heterogeneous upper crust which consists of a series of uplifts and depression basins. The velocity model and region imply that this region has experienced crustal uplift and extensional tectonism with concomitant magmatism since the Cenozoic.