Emissions of air pollutants and greenhouse gases into the atmosphere in Antarctica from power plants with diesel generators(the main sources of energy at Antarctic research stations and the main stationary sources of ...Emissions of air pollutants and greenhouse gases into the atmosphere in Antarctica from power plants with diesel generators(the main sources of energy at Antarctic research stations and the main stationary sources of anthropogenic emissions in the Antarctic)were assessed.A bottom-up approach was used to compile an emission inventory for the Antarctic.This involved estimating emissions at various spatial levels by sequentially aggregating estimate emissions from point emission sources.This is the first time this approach has been proposed and used.Emissions of CO2,NOx,particulate matter(PM10),and CO in the modern period were estimated at the research station,geographic region,natural domain,biogeographic region,continent section,and whole continent scales.Yearly emissions are presented here,but the approach allows emissions at different averaging periods to be estimated.This means mean or maximum yearly,monthly,daily,or hourly emissions can be estimated.The estimates could be used to model pollutant transmission and dispersion,assess the impacts of pollutants,and develop emission forecasts for various scenarios.展开更多
By establishing emission inventory of air pollution sources in Beijing,and classifying and compiling the pollutant types and corresponding pollution source data in more detail,it could provide the reference for studyi...By establishing emission inventory of air pollution sources in Beijing,and classifying and compiling the pollutant types and corresponding pollution source data in more detail,it could provide the reference for studying causes of haze and related policy impact assessment in Beijing.In this paper,selecting relevant data published in the Beijing Statistical Yearbook,referring to emission coefficients in the technical guidelines for the preparation of various pollution sources,and combining characteristics of energy consumption in Beijing,emission inventory of air pollution sources in six parts is established:thermal power plant,industrial combustion source(by industry),technological process source(by product variety),motor vehicle,building construction and residents life,and the contribution rate of each part to air pollutants is given.Finally,policy suggestions for haze control in Beijing are put forward.展开更多
The amount of several air pollutants emitted in some cities including Hangzhou,Ningbo,Huzhou,Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010.This paper f...The amount of several air pollutants emitted in some cities including Hangzhou,Ningbo,Huzhou,Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010.This paper focused on the release of air pollutants such as NO_(x2),SO_2,CO,PM2.5,PM10 and VOC,and calculated the total amount of those air pollutants.It analyzed air pollutant emission factors and found that the electricity and heat production industry released the largest amount of pollutants.展开更多
The Northern Key Economic region of Vietnam is a dynamic economic center that is an important economic locomotive of the North and the whole of Vietnam.In this area,large industrial parks are concentrated,attracting m...The Northern Key Economic region of Vietnam is a dynamic economic center that is an important economic locomotive of the North and the whole of Vietnam.In this area,large industrial parks are concentrated,attracting many large FDI projects.Key industries:cement production,cars-motorcycles,electronics,...Economic development entails environmental problems.The industrial sector has been identified as the number one driving force driving the growth of Hanoi city and neighboring provinces.Therefore,industrial development is one of the main causes of environmental pollution.In addition,the growth rate of industry in neighboring provinces significantly affects the air quality in Hanoi city.Some factories in Vinh Phuc,Hung Yen,Bac Ninh and Hai Duong provinces have large sources of gas emissions,potentially affecting air quality around Hanoi city.Monitoring results show that air pollution in Hanoi city is mainly caused by dust pollution,especially PM2.5 superfine dust.This is a very harmful dust to health;it is necessary to determine the cause and control solution.Therefore,the objectives of this study are:(1)inventory of potential emissions sources for industrial activities in the northern key economic region around Hanoi;(2)Simulate air spread by AERMOD model to get an overall picture of the industrial impact of surrounding provinces in Hanoi city;(3)Propose solutions to manage air quality for the city in the coming time.Simulation results for pollutants with the highest concentration of NOx for 1 hour,24 hours and the average of the year is 7.94;1.02;0.222(μg/m3);of CO for 1 hour and 8 hours are 27.616;8.89(μg/m3);of SO2 for 1 hour,24 hours and the average of the year is 4.005;0.288;0.038(μg/m3);of PM2.5 for 1 hour,24 hours and the average of the year is 0.32;0.023;0.003(μg/m3);of PM10 in 1 hour,24 hours and year average are 1.03;0.074;0.098(μg/m3).展开更多
Traffic is one of the main air pollution source in urban cities,especially in Ho Chi Minh City.Annually,it emits a huge amount of pollutants into the atmosphere;and air quality in HCMC becomes worse due to circulation...Traffic is one of the main air pollution source in urban cities,especially in Ho Chi Minh City.Annually,it emits a huge amount of pollutants into the atmosphere;and air quality in HCMC becomes worse due to circulation of outdate private vehicles.Therefore,clean air plan(CAP)is necessary for reducing air pollution level in the city and air emission inventory(EI)is an essential step to develop CAP.Mobilev model from Germany was chosen to conduct EI for HCMC.Objectives include of this study:(i)elaborating an air emission inventory(EI)from road traffic activities over HCMC;and(ii)assessing emission control policies and study abatement strategies to reduce air pollution level from traffic activities for HCMC in 2020.The results indicated that motorcycles are the main sources of air emission in HCMC.The emissions of CO are 3,586.707 tons/year,following ish VOC,NOx,CH4,NO2,SO2 and particulate matter(PM).In addition,CO2,which is one of the main greenhouse gases,also included and contributed 36,293.501 ton/year.These pollutants concentrated in the center which has crowded roads and population,affecting directly human health.Therefore,a replaced private vehicle with public transportation is necessary to reduce emissions.Two abatement strategies to 2020 for reducing emissions were performed and showed that if the HCMC government has severe policies on motor vehicles,the emission will be reduced until 60%,opposite emissions in 2020 will be increased to 200%.展开更多
Sugar cane bagasse is one of the largest fuels used for electricity generation in Brazil and its usage has continuously increased to supply the energy demand. This paper presents emission inventory based on power plan...Sugar cane bagasse is one of the largest fuels used for electricity generation in Brazil and its usage has continuously increased to supply the energy demand. This paper presents emission inventory based on power plants burning sugar cane bagasse. The inventory involves the spatial distribution and the estimated flows for the following major pollutants: nitrogen oxides (NOx), particulate material (PM), carbon dioxide (CO2) and total organic carbon (TOC). A total of 384 power plants were inventoried, representing a generated power of 9.9 GW, about 26% of the energy produced by thermal power plants sector. The plants are concentrated in two main poles: one of them in S?o Paulo State and nearby areas and the other one in coast of Brazilian Northeast. The limits proposed by the AP-42 Regulations of the US Environmental Protection Agency (USEPA) for the emission factors were applied. Additional emission factors identified in the scientific literature were also included in the analysis in order to assess the uncertainties associated to the estimative. The estimated emissions showed values in the range 16.0 - 20.5 Gg?year?1 for NOx, 18.0 - 267.0 Gg?year?1 for MP and 20.5 - 26.7 Tg?year?1 for CO2. The contribution of TOC showed a minor contribution around 10 - 20 Mg?year?1. PM showed to be the most representative pollutant emitted by the thermal plants burning sugar cane bagasse, but with a large range of uncertainty. There is a high level of uncertainty associated to the preparation of cane as well as the use of collectors to control particulate emissions. The adequate control over all stages could reduce the bagasse ash content in 90% or more.展开更多
Using a bottom-up estimation method,a comprehensive,high-resolution emission inventory of gaseous and particulate atmospheric pollutants for multiple anthropogenic sectors with typical local sources has been developed...Using a bottom-up estimation method,a comprehensive,high-resolution emission inventory of gaseous and particulate atmospheric pollutants for multiple anthropogenic sectors with typical local sources has been developed for the Harbin-Changchun city agglomeration(HCA).The annual emissions for CO,NO_(x),SO_(2),NH_(3),VOC S,PM_(2.5),PM 10,BC and OC during 2017 in the HCA were estimated to be 5.82 Tg,0.70 Tg,0.34 Tg,0.75 Tg,0.81 Tg,0.67 Tg,1.59 Tg,0.12 Tg and 0.26 Tg,respectively.For PM 10 and SO_(2),the emissions from industry processes were the dominant contributors representing 54.7%and 49.5%,respectively,of the total emissions,while 95.3%and 44.5%of the total NH_(3)and NO x emissions,respectively,were from or associated with agricultural activities and transportation.Spatiotemporal distributions showed that most emissions(except NH_(3))occurred in November to March and were concentrated in the central cities of Changchun and Harbin and the surrounding cities.Open burning of straw made an important contribution to PM_(2.5)in the central regions of the northeastern plain during autumn and spring,while domestic coal combustion for heating purposes was significant with respect to SO_(2)and PM_(2.5)emissions during autumn and winter.Furthermore,based on Principal Component Analysis and Multivariable Linear Regression model,air temperature,relative humidity,electricity and energy consumption,and the urban and rural population were optimized to be representative indicators for rapidly assessing the magnitude of regional atmospheric pollutants in the HCA.Such indicators and equations were demonstrated to be useful for local atmospheric environment management.展开更多
Efficient management of air quality requires a comprehensive emission inventory to support decision-making on air quality improvement.This article presents a comprehensive framework for detailed emission inventory dev...Efficient management of air quality requires a comprehensive emission inventory to support decision-making on air quality improvement.This article presents a comprehensive framework for detailed emission inventory development in cities with low-quality basic data,which examines the emission of primary criteria pollutants(CO,NO_(x),SO_(2),PM_(2.5),PM_(10),and VOC)from mobile sources,residential,commercial,and public services,fuel stations,transport terminals,energy conversion sections,and industries.This research was applied to Tabriz in Northwest Iran,one of the polluted medium-sized cities with a population of 1.77 million.Results show the city daily emission per capita is 569.8 g of CO,68.6 g of NO_(x),38.6 g of VOC,17.6 g of SO_(x),and 3.7 g of PM.Vehicular emissions accounted for 98%of CO,91%of VOCs,61%of NO_(x),and 56%of PM;meaning alternative policy strategies in vehicles would reduce emissions rapidly.Fifteen applicable and effective scenarios in transport and one concerning stationary sourceswere proposed and reduction potential of themwas evaluated.Effectiveness of the public transport improvement and replacement of old passenger cars were founded the key scenarios.These two alternatives decrease 14 and 2 tons of SO_(2) and 6797 and 2394 tons of NO_(x) annually with the cost of$99.5 MM and$366.5 MM,respectively.The findings of this study provides the choice of travel method by each citizen is a function of cost,speed,comfort and safety of travel;therefore,all the requirements of any scenarios must be fully considered in the implementation step.展开更多
With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relati...With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O3,decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2.However, particulate matter pollution has declined gradually, while O3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.展开更多
Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atm...Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atmosphere. The air quality in urban areas is of a great concern for residents living in cities and represents a current issue that requires an adequate management. So that air quality policy is driven by health concerns. In this paper, we present an overview on the experience of Agadir city to establish the air quality management policy, local authority on the whole have developed a good understanding of air quality in the area. Indeed for several years, efforts have been made to monitor the air quality in this city, this translated by air quality assessment since 2006 using mobile laboratory and fixed station. Our goals in this study were to review the operation of Local Air Quality Management (LAQM) making better use of available resources to improve its outcomes and make recommendations with a view to improving air quality issues. This work highlights the requirement to revise periodically the LAQM for generating priority for air quality issues within local authority and the need to implement the optimizing Air Quality Monitoring Network (AQMN).展开更多
Air quality models are tools capable to predict the physical and chemical processes that affect air pollutants as they disperse and reacts in the atmosphere. These models need input containing meteorological data, ter...Air quality models are tools capable to predict the physical and chemical processes that affect air pollutants as they disperse and reacts in the atmosphere. These models need input containing meteorological data, terrestrial data and emissions. Meteorological and terrestrial data comes from different sources such as meteorological stations and satellite images which are important to represent the current state of the atmosphere and are available at least on a daily frequency. On the other hand, the emission data comes from pollution inventories generated mainly from governmental reports, this data needs to be processed by various reasons such as the correction of outdated emissions, for combining inventories or to speciate the emitted pollutants to different chemical mechanisms. EmissV is a code written into a high-level programming language to create emissions input for these atmospheric models. The emissions from EmissV are coherent with the total and the spatial distribution of emissions obtained from other preprocessors.展开更多
为准确掌握荆州开发区大气污染物排放状况,该研究采用排放因子法,基于资料收集与实地调查结合的方式获取活动水平、文献调研选取排放系数,结合ArcGIS平台,建立了荆州开发区2019年1 km×1 km 10类排放源9种大气污染物排放清单。结果...为准确掌握荆州开发区大气污染物排放状况,该研究采用排放因子法,基于资料收集与实地调查结合的方式获取活动水平、文献调研选取排放系数,结合ArcGIS平台,建立了荆州开发区2019年1 km×1 km 10类排放源9种大气污染物排放清单。结果表明:开发区SO_(2)、NO_(x)、CO、VOCs、NH_(3)、PM_(10)、PM_(2.5)、BC和OC的排放量分别为850.4、2407.1、4584.0、4848.3、107.7、8602.1、4485.3、57.8和159.6 t。移动源是NO_(x)的主要来源,占NO_(x)总排放量的43.8%。固定燃烧源是CO的主要来源,占CO总排放量的81.5%。工艺过程源是SO_(2)、VOCs、PM_(10)、PM_(2.5)和OC的主要来源,分别占SO_(2)、VOCs、PM_(10)、PM_(2.5)和OC总排放量的50.9%、69.0%、85.6%、85.5%和83.8%。农业源是NH_(3)的主要来源之一,占NH_(3)总排放量的32.8%。扬尘源对PM_(10)、PM_(2.5)的排放贡献仅分别为11.5%和10.1%。展开更多
文摘Emissions of air pollutants and greenhouse gases into the atmosphere in Antarctica from power plants with diesel generators(the main sources of energy at Antarctic research stations and the main stationary sources of anthropogenic emissions in the Antarctic)were assessed.A bottom-up approach was used to compile an emission inventory for the Antarctic.This involved estimating emissions at various spatial levels by sequentially aggregating estimate emissions from point emission sources.This is the first time this approach has been proposed and used.Emissions of CO2,NOx,particulate matter(PM10),and CO in the modern period were estimated at the research station,geographic region,natural domain,biogeographic region,continent section,and whole continent scales.Yearly emissions are presented here,but the approach allows emissions at different averaging periods to be estimated.This means mean or maximum yearly,monthly,daily,or hourly emissions can be estimated.The estimates could be used to model pollutant transmission and dispersion,assess the impacts of pollutants,and develop emission forecasts for various scenarios.
基金Supported by Beijing Natural Science Foundation Project(9192002)Key Project of Beijing Social Science Foundation(19YJA002).
文摘By establishing emission inventory of air pollution sources in Beijing,and classifying and compiling the pollutant types and corresponding pollution source data in more detail,it could provide the reference for studying causes of haze and related policy impact assessment in Beijing.In this paper,selecting relevant data published in the Beijing Statistical Yearbook,referring to emission coefficients in the technical guidelines for the preparation of various pollution sources,and combining characteristics of energy consumption in Beijing,emission inventory of air pollution sources in six parts is established:thermal power plant,industrial combustion source(by industry),technological process source(by product variety),motor vehicle,building construction and residents life,and the contribution rate of each part to air pollutants is given.Finally,policy suggestions for haze control in Beijing are put forward.
基金supported by the Special Major Science and Technology Project of Zhejiang Province "the Prevention and Control of Regional Haze Weather in Cities of Zhejiang"[projectno.2011C13022]Science and Technology Project of Environmental Protection Bureau of Zhejiang Province "Rulesand Countermeasures of Haze Weather in Zhejiang Province"[project no.200914]
文摘The amount of several air pollutants emitted in some cities including Hangzhou,Ningbo,Huzhou,Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010.This paper focused on the release of air pollutants such as NO_(x2),SO_2,CO,PM2.5,PM10 and VOC,and calculated the total amount of those air pollutants.It analyzed air pollutant emission factors and found that the electricity and heat production industry released the largest amount of pollutants.
基金The authors would like to thank the Ministry of Natural Resources and Environment for funding this study through the project code TNMT.2020.04.10 and Contract No.28/HD-VP signed on October 1,2020.
文摘The Northern Key Economic region of Vietnam is a dynamic economic center that is an important economic locomotive of the North and the whole of Vietnam.In this area,large industrial parks are concentrated,attracting many large FDI projects.Key industries:cement production,cars-motorcycles,electronics,...Economic development entails environmental problems.The industrial sector has been identified as the number one driving force driving the growth of Hanoi city and neighboring provinces.Therefore,industrial development is one of the main causes of environmental pollution.In addition,the growth rate of industry in neighboring provinces significantly affects the air quality in Hanoi city.Some factories in Vinh Phuc,Hung Yen,Bac Ninh and Hai Duong provinces have large sources of gas emissions,potentially affecting air quality around Hanoi city.Monitoring results show that air pollution in Hanoi city is mainly caused by dust pollution,especially PM2.5 superfine dust.This is a very harmful dust to health;it is necessary to determine the cause and control solution.Therefore,the objectives of this study are:(1)inventory of potential emissions sources for industrial activities in the northern key economic region around Hanoi;(2)Simulate air spread by AERMOD model to get an overall picture of the industrial impact of surrounding provinces in Hanoi city;(3)Propose solutions to manage air quality for the city in the coming time.Simulation results for pollutants with the highest concentration of NOx for 1 hour,24 hours and the average of the year is 7.94;1.02;0.222(μg/m3);of CO for 1 hour and 8 hours are 27.616;8.89(μg/m3);of SO2 for 1 hour,24 hours and the average of the year is 4.005;0.288;0.038(μg/m3);of PM2.5 for 1 hour,24 hours and the average of the year is 0.32;0.023;0.003(μg/m3);of PM10 in 1 hour,24 hours and year average are 1.03;0.074;0.098(μg/m3).
文摘Traffic is one of the main air pollution source in urban cities,especially in Ho Chi Minh City.Annually,it emits a huge amount of pollutants into the atmosphere;and air quality in HCMC becomes worse due to circulation of outdate private vehicles.Therefore,clean air plan(CAP)is necessary for reducing air pollution level in the city and air emission inventory(EI)is an essential step to develop CAP.Mobilev model from Germany was chosen to conduct EI for HCMC.Objectives include of this study:(i)elaborating an air emission inventory(EI)from road traffic activities over HCMC;and(ii)assessing emission control policies and study abatement strategies to reduce air pollution level from traffic activities for HCMC in 2020.The results indicated that motorcycles are the main sources of air emission in HCMC.The emissions of CO are 3,586.707 tons/year,following ish VOC,NOx,CH4,NO2,SO2 and particulate matter(PM).In addition,CO2,which is one of the main greenhouse gases,also included and contributed 36,293.501 ton/year.These pollutants concentrated in the center which has crowded roads and population,affecting directly human health.Therefore,a replaced private vehicle with public transportation is necessary to reduce emissions.Two abatement strategies to 2020 for reducing emissions were performed and showed that if the HCMC government has severe policies on motor vehicles,the emission will be reduced until 60%,opposite emissions in 2020 will be increased to 200%.
基金This work received funding support from CNPq(National Counsel of Technological and Scientific Development,process 404104/2013-4)CAPES(Coordination for the Improvement of Higher Education Personnel)and Araucária Foundation
文摘Sugar cane bagasse is one of the largest fuels used for electricity generation in Brazil and its usage has continuously increased to supply the energy demand. This paper presents emission inventory based on power plants burning sugar cane bagasse. The inventory involves the spatial distribution and the estimated flows for the following major pollutants: nitrogen oxides (NOx), particulate material (PM), carbon dioxide (CO2) and total organic carbon (TOC). A total of 384 power plants were inventoried, representing a generated power of 9.9 GW, about 26% of the energy produced by thermal power plants sector. The plants are concentrated in two main poles: one of them in S?o Paulo State and nearby areas and the other one in coast of Brazilian Northeast. The limits proposed by the AP-42 Regulations of the US Environmental Protection Agency (USEPA) for the emission factors were applied. Additional emission factors identified in the scientific literature were also included in the analysis in order to assess the uncertainties associated to the estimative. The estimated emissions showed values in the range 16.0 - 20.5 Gg?year?1 for NOx, 18.0 - 267.0 Gg?year?1 for MP and 20.5 - 26.7 Tg?year?1 for CO2. The contribution of TOC showed a minor contribution around 10 - 20 Mg?year?1. PM showed to be the most representative pollutant emitted by the thermal plants burning sugar cane bagasse, but with a large range of uncertainty. There is a high level of uncertainty associated to the preparation of cane as well as the use of collectors to control particulate emissions. The adequate control over all stages could reduce the bagasse ash content in 90% or more.
基金funded under the auspices of the National Key R&D Program of China(No.2017YFC0212303)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-DQC045)+3 种基金the National Natural Science Foundation of China(No.41775116)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2017275)Northeast Institute of Geography and Agroecology,CAS(No.IGA-135-05)Science and Technology Development Project in Jilin Province(No.20180520095JH)。
文摘Using a bottom-up estimation method,a comprehensive,high-resolution emission inventory of gaseous and particulate atmospheric pollutants for multiple anthropogenic sectors with typical local sources has been developed for the Harbin-Changchun city agglomeration(HCA).The annual emissions for CO,NO_(x),SO_(2),NH_(3),VOC S,PM_(2.5),PM 10,BC and OC during 2017 in the HCA were estimated to be 5.82 Tg,0.70 Tg,0.34 Tg,0.75 Tg,0.81 Tg,0.67 Tg,1.59 Tg,0.12 Tg and 0.26 Tg,respectively.For PM 10 and SO_(2),the emissions from industry processes were the dominant contributors representing 54.7%and 49.5%,respectively,of the total emissions,while 95.3%and 44.5%of the total NH_(3)and NO x emissions,respectively,were from or associated with agricultural activities and transportation.Spatiotemporal distributions showed that most emissions(except NH_(3))occurred in November to March and were concentrated in the central cities of Changchun and Harbin and the surrounding cities.Open burning of straw made an important contribution to PM_(2.5)in the central regions of the northeastern plain during autumn and spring,while domestic coal combustion for heating purposes was significant with respect to SO_(2)and PM_(2.5)emissions during autumn and winter.Furthermore,based on Principal Component Analysis and Multivariable Linear Regression model,air temperature,relative humidity,electricity and energy consumption,and the urban and rural population were optimized to be representative indicators for rapidly assessing the magnitude of regional atmospheric pollutants in the HCA.Such indicators and equations were demonstrated to be useful for local atmospheric environment management.
文摘Efficient management of air quality requires a comprehensive emission inventory to support decision-making on air quality improvement.This article presents a comprehensive framework for detailed emission inventory development in cities with low-quality basic data,which examines the emission of primary criteria pollutants(CO,NO_(x),SO_(2),PM_(2.5),PM_(10),and VOC)from mobile sources,residential,commercial,and public services,fuel stations,transport terminals,energy conversion sections,and industries.This research was applied to Tabriz in Northwest Iran,one of the polluted medium-sized cities with a population of 1.77 million.Results show the city daily emission per capita is 569.8 g of CO,68.6 g of NO_(x),38.6 g of VOC,17.6 g of SO_(x),and 3.7 g of PM.Vehicular emissions accounted for 98%of CO,91%of VOCs,61%of NO_(x),and 56%of PM;meaning alternative policy strategies in vehicles would reduce emissions rapidly.Fifteen applicable and effective scenarios in transport and one concerning stationary sourceswere proposed and reduction potential of themwas evaluated.Effectiveness of the public transport improvement and replacement of old passenger cars were founded the key scenarios.These two alternatives decrease 14 and 2 tons of SO_(2) and 6797 and 2394 tons of NO_(x) annually with the cost of$99.5 MM and$366.5 MM,respectively.The findings of this study provides the choice of travel method by each citizen is a function of cost,speed,comfort and safety of travel;therefore,all the requirements of any scenarios must be fully considered in the implementation step.
基金supported by the National Science and Technology Program of China(Nos.2017YFC0211601,2016YFC0202700)the National Natural Science Foundation of China(No.81571130090)the National Research Program for Key Issues in Air Pollution Control(No.DQGG0103)
文摘With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O3,decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2.However, particulate matter pollution has declined gradually, while O3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.
文摘Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atmosphere. The air quality in urban areas is of a great concern for residents living in cities and represents a current issue that requires an adequate management. So that air quality policy is driven by health concerns. In this paper, we present an overview on the experience of Agadir city to establish the air quality management policy, local authority on the whole have developed a good understanding of air quality in the area. Indeed for several years, efforts have been made to monitor the air quality in this city, this translated by air quality assessment since 2006 using mobile laboratory and fixed station. Our goals in this study were to review the operation of Local Air Quality Management (LAQM) making better use of available resources to improve its outcomes and make recommendations with a view to improving air quality issues. This work highlights the requirement to revise periodically the LAQM for generating priority for air quality issues within local authority and the need to implement the optimizing Air Quality Monitoring Network (AQMN).
文摘Air quality models are tools capable to predict the physical and chemical processes that affect air pollutants as they disperse and reacts in the atmosphere. These models need input containing meteorological data, terrestrial data and emissions. Meteorological and terrestrial data comes from different sources such as meteorological stations and satellite images which are important to represent the current state of the atmosphere and are available at least on a daily frequency. On the other hand, the emission data comes from pollution inventories generated mainly from governmental reports, this data needs to be processed by various reasons such as the correction of outdated emissions, for combining inventories or to speciate the emitted pollutants to different chemical mechanisms. EmissV is a code written into a high-level programming language to create emissions input for these atmospheric models. The emissions from EmissV are coherent with the total and the spatial distribution of emissions obtained from other preprocessors.
文摘为准确掌握荆州开发区大气污染物排放状况,该研究采用排放因子法,基于资料收集与实地调查结合的方式获取活动水平、文献调研选取排放系数,结合ArcGIS平台,建立了荆州开发区2019年1 km×1 km 10类排放源9种大气污染物排放清单。结果表明:开发区SO_(2)、NO_(x)、CO、VOCs、NH_(3)、PM_(10)、PM_(2.5)、BC和OC的排放量分别为850.4、2407.1、4584.0、4848.3、107.7、8602.1、4485.3、57.8和159.6 t。移动源是NO_(x)的主要来源,占NO_(x)总排放量的43.8%。固定燃烧源是CO的主要来源,占CO总排放量的81.5%。工艺过程源是SO_(2)、VOCs、PM_(10)、PM_(2.5)和OC的主要来源,分别占SO_(2)、VOCs、PM_(10)、PM_(2.5)和OC总排放量的50.9%、69.0%、85.6%、85.5%和83.8%。农业源是NH_(3)的主要来源之一,占NH_(3)总排放量的32.8%。扬尘源对PM_(10)、PM_(2.5)的排放贡献仅分别为11.5%和10.1%。