Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele...Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.展开更多
Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre...Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><sp...Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">frequency and severity of crashes. This study used connected vehicle data to evaluate the spatial and temporal impact that regulatory signs, speed feedback displays, and construction site geometry had on vehicle speed. Over 27,000 unique trips over 2 weeks on a 15-mile interstate construction work zone near Lebanon, IN were analyzed. Spatial analysis over a 0.2-mi segment before and after the posted speed limit signs showed that the regulatory signs had no statistical impact on reducing speeds. A before/after analysis was also conducted to study the impact of radar-based speed feedback that displays the motorists</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> speed on a sign below a regulatory speed limit sign. Results showed a maximum drop in median speeds of approximately 5 mph. Speeds greater than 15 mph above the speed limit dropped by 10%</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">15%. The reduction in speeds began approximately 1000 feet ahead of the sign and results were found to be statistically significant. </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">analysis also revealed that larger speed drops inside the work zone were due to geometric constraints that required additional driver workloads, especially during shoulder width changes and lane shifts. The results from this study will be helpful for agencies to understand driver behavior in the work zones and to identify proper speed limit compliance techniques that significantly reduce driver speeds in and around work zones.</span></span></span></span></span>展开更多
Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures....Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures. A common concern by agencies interested in using crowd sourced probe data is the penetration rate across different types of roads, different hours of the day, and different regions. This paper describes and demonstrates a methodology that uses data from state highway performance monitoring systems in Indiana, Ohio<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and Pennsylvania. The study analyzes 54 locations over the 3 states for select Wednesdays and Saturdays in 2020 and 2021. Overall, across all locations and dates, the median penetration was approximately 4.5%. The median penetration for August 2020 for Indiana, Ohio, and Pennsylvania was 4.6%, 4.3%, and 4.0%, respectively. The median penetration for those same states in August 2020 on interstates and non-interstates was 3.9% and 4.6%, respectively. Additionally, the study conducted a longitudinal evaluation of Indiana penetration for selected months between January 2020 </span><span style="font-family:Verdana;">and</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> June 2021. Indiana penetration increased modestly between December 2020 and June 2021, perhaps due to the post-COVID rebound of passenger vehicle traffic. This pap</span><span style="font-family:Verdana;">er concludes by recommending that the techniques described in this paper</span><span style="font-family:Verdana;"> be scaled to other states so that traffic engineers can make informed decisions on the use and limitations of connected vehicle data for various use cases.</span></span>展开更多
In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive conve...In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed.First,the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes.Secondly,the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem.The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity.Finally,the MVF-SCA algorithm for UAV trajectory planning is proposed,which can not only be used for daily data collection in the target area,but also collect time-sensitive abnormal data in time when the exception occurs.Simulation results show that,compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm,the VoI collected by the proposed algorithm can be improved by about 15%to 30%.展开更多
This paper explains trajectory-based data forwarding schemes for multihop data delivery in vehicular networks where the trajectory is the GPS navigation path for driving in a road network. Nowadays, GPS-based navigati...This paper explains trajectory-based data forwarding schemes for multihop data delivery in vehicular networks where the trajectory is the GPS navigation path for driving in a road network. Nowadays, GPS-based navigation is popular with drivers either for efficient driv- ing in unfamiliar road networks or for a better route, even in familiar road networks with heavy traffic. In this paper, we describe how to take advantage of vehicle trajectories in order to design data-forwarding schemes for information exchange in vehicular networks. The design of data-forwarding schemes takes into account not only the macro-scoped mobility of vehicular traffic statistics in road net- works, but also the micro-scoped mobility of individual vehicle trajectories. This paper addresses the importance of vehicle trajectory in the design of multihop vehicle-to-infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle data forwarding schemes. First, we explain the modeling of packet delivery delay and vehicle travel delay in both a road segment and an end-to-end path in a road net- work. Second, we describe a state-of-the-art data forwarding scheme using vehicular traffic statistics for the estimation of the end-to- end delivery delay as a forwarding metric. Last, we describe two data forwarding schemes based on both vehicle trajectory and vehicu- lar traffic statistics in a privacy-preserving manner.展开更多
This paper explores the movement of connected vehicles in Indiana for vehicles classified by the NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid electric (HV). Analysis of tra...This paper explores the movement of connected vehicles in Indiana for vehicles classified by the NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid electric (HV). Analysis of trajectories from July 12-18, 2021 for the state of Indiana observed nearly 33,300 trips and 267,000 vehicle miles travelled (VMT) for the combination of EV and HV. Approximately 53% of the VMT occurred in just 10 counties. For just EVs, there were 9814 unique trips and 64,700 Electric Vehicle Miles Traveled (EVMTs) in total. A further categorization of this revealed that 18% of these EVMTs were on Interstate roadways and 82% on non-interstate roads. <span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">Proximity analysis of existing DC Fast charging stations in relation to interstate roadways revealed multiple charging deserts that would be most benefited by additional charging capacity. Eleven roadway sections among the 9 interstates were found to have a gap in available DC fast chargers of 50 miles or more. Although the connected vehicle data set analyzed did not include all EV’s the methodology presented in this paper provides a technique that can be scaled as additional EV connected vehicle data becomes available to agencies. Furthermore, it emphasizes the need for transportation agencies and automotive vendors to strengthen their data sharing partnerships to help accelerate </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">adoption of EV and reduce consumer range anxiety with EV. Graphics are included that illustrate examples of counties that are both overserved and underserved by charging infrastructure.</span>展开更多
【目的】对城市交叉口采用的左转非机动车信号灯设施进行交通安全性量化评估。【方法】提出一种基于拓展碰撞时间(extended time to collision,ETTC)指标的左转非机动车信号灯安全效应评估方法。针对现有的碰撞时间(time to collision,T...【目的】对城市交叉口采用的左转非机动车信号灯设施进行交通安全性量化评估。【方法】提出一种基于拓展碰撞时间(extended time to collision,ETTC)指标的左转非机动车信号灯安全效应评估方法。针对现有的碰撞时间(time to collision,TTC)指标不适于评估交叉口左转非机动车冲突的问题,考虑非机动车车辆尺寸与加速度对交通冲突的影响,采用拓展碰撞时间指标,评估交叉口非机动车交通冲突。收集长沙市4个信号交叉口的视频大数据,利用视频软件Tracker提取车辆微观轨迹后,开展案例分析。【结果】左转非机动车信号灯在时间上明确了非机动车的通行权,其设置能显著降低非机动车冲突率,在平峰、高峰时段非机动车冲突率分别降低了40.11%、25.27%。在直行相位末期、左转相位即将启亮时,设置组的左转非机动车在待行区等待,冲突率降为0;而对比组近50%的非机动车违规左转,冲突严重。设置左转非机动车信号灯的改善效果随非机动车流量的增大呈先增加后降低趋势,而随机动车流量的增大呈逐步波动下降趋势。【结论】本研究揭示了非机动车左转信号灯的设置对减少交叉口交通冲突的影响,可为城市交叉口非机动车交通安全管控提供有益参考。展开更多
文摘Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.
文摘Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.
文摘Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">frequency and severity of crashes. This study used connected vehicle data to evaluate the spatial and temporal impact that regulatory signs, speed feedback displays, and construction site geometry had on vehicle speed. Over 27,000 unique trips over 2 weeks on a 15-mile interstate construction work zone near Lebanon, IN were analyzed. Spatial analysis over a 0.2-mi segment before and after the posted speed limit signs showed that the regulatory signs had no statistical impact on reducing speeds. A before/after analysis was also conducted to study the impact of radar-based speed feedback that displays the motorists</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> speed on a sign below a regulatory speed limit sign. Results showed a maximum drop in median speeds of approximately 5 mph. Speeds greater than 15 mph above the speed limit dropped by 10%</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">15%. The reduction in speeds began approximately 1000 feet ahead of the sign and results were found to be statistically significant. </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">analysis also revealed that larger speed drops inside the work zone were due to geometric constraints that required additional driver workloads, especially during shoulder width changes and lane shifts. The results from this study will be helpful for agencies to understand driver behavior in the work zones and to identify proper speed limit compliance techniques that significantly reduce driver speeds in and around work zones.</span></span></span></span></span>
文摘Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures. A common concern by agencies interested in using crowd sourced probe data is the penetration rate across different types of roads, different hours of the day, and different regions. This paper describes and demonstrates a methodology that uses data from state highway performance monitoring systems in Indiana, Ohio<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and Pennsylvania. The study analyzes 54 locations over the 3 states for select Wednesdays and Saturdays in 2020 and 2021. Overall, across all locations and dates, the median penetration was approximately 4.5%. The median penetration for August 2020 for Indiana, Ohio, and Pennsylvania was 4.6%, 4.3%, and 4.0%, respectively. The median penetration for those same states in August 2020 on interstates and non-interstates was 3.9% and 4.6%, respectively. Additionally, the study conducted a longitudinal evaluation of Indiana penetration for selected months between January 2020 </span><span style="font-family:Verdana;">and</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> June 2021. Indiana penetration increased modestly between December 2020 and June 2021, perhaps due to the post-COVID rebound of passenger vehicle traffic. This pap</span><span style="font-family:Verdana;">er concludes by recommending that the techniques described in this paper</span><span style="font-family:Verdana;"> be scaled to other states so that traffic engineers can make informed decisions on the use and limitations of connected vehicle data for various use cases.</span></span>
基金The National Key R&D Program of China(No.2018YFB1500800)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2019025)+1 种基金Pre-Research Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414190405)the Open Project of the Key Laboratory of Wireless Sensor Network&Communication of Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences(No.20190907).
文摘In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed.First,the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes.Secondly,the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem.The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity.Finally,the MVF-SCA algorithm for UAV trajectory planning is proposed,which can not only be used for daily data collection in the target area,but also collect time-sensitive abnormal data in time when the exception occurs.Simulation results show that,compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm,the VoI collected by the proposed algorithm can be improved by about 15%to 30%.
基金supported by Faculty Research Fund,Sungkyunkwan University,2013 and by DGIST CPS Global Centerpartly supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea(NRF)+1 种基金funded by the Ministry of Science,ICT & Future Planning(No.2012033347)the ITR & D program of MKE/KEIT(10041244,SmartTV 2.0 Software Platform)
文摘This paper explains trajectory-based data forwarding schemes for multihop data delivery in vehicular networks where the trajectory is the GPS navigation path for driving in a road network. Nowadays, GPS-based navigation is popular with drivers either for efficient driv- ing in unfamiliar road networks or for a better route, even in familiar road networks with heavy traffic. In this paper, we describe how to take advantage of vehicle trajectories in order to design data-forwarding schemes for information exchange in vehicular networks. The design of data-forwarding schemes takes into account not only the macro-scoped mobility of vehicular traffic statistics in road net- works, but also the micro-scoped mobility of individual vehicle trajectories. This paper addresses the importance of vehicle trajectory in the design of multihop vehicle-to-infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle data forwarding schemes. First, we explain the modeling of packet delivery delay and vehicle travel delay in both a road segment and an end-to-end path in a road net- work. Second, we describe a state-of-the-art data forwarding scheme using vehicular traffic statistics for the estimation of the end-to- end delivery delay as a forwarding metric. Last, we describe two data forwarding schemes based on both vehicle trajectory and vehicu- lar traffic statistics in a privacy-preserving manner.
文摘This paper explores the movement of connected vehicles in Indiana for vehicles classified by the NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid electric (HV). Analysis of trajectories from July 12-18, 2021 for the state of Indiana observed nearly 33,300 trips and 267,000 vehicle miles travelled (VMT) for the combination of EV and HV. Approximately 53% of the VMT occurred in just 10 counties. For just EVs, there were 9814 unique trips and 64,700 Electric Vehicle Miles Traveled (EVMTs) in total. A further categorization of this revealed that 18% of these EVMTs were on Interstate roadways and 82% on non-interstate roads. <span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">Proximity analysis of existing DC Fast charging stations in relation to interstate roadways revealed multiple charging deserts that would be most benefited by additional charging capacity. Eleven roadway sections among the 9 interstates were found to have a gap in available DC fast chargers of 50 miles or more. Although the connected vehicle data set analyzed did not include all EV’s the methodology presented in this paper provides a technique that can be scaled as additional EV connected vehicle data becomes available to agencies. Furthermore, it emphasizes the need for transportation agencies and automotive vendors to strengthen their data sharing partnerships to help accelerate </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">adoption of EV and reduce consumer range anxiety with EV. Graphics are included that illustrate examples of counties that are both overserved and underserved by charging infrastructure.</span>
文摘【目的】对城市交叉口采用的左转非机动车信号灯设施进行交通安全性量化评估。【方法】提出一种基于拓展碰撞时间(extended time to collision,ETTC)指标的左转非机动车信号灯安全效应评估方法。针对现有的碰撞时间(time to collision,TTC)指标不适于评估交叉口左转非机动车冲突的问题,考虑非机动车车辆尺寸与加速度对交通冲突的影响,采用拓展碰撞时间指标,评估交叉口非机动车交通冲突。收集长沙市4个信号交叉口的视频大数据,利用视频软件Tracker提取车辆微观轨迹后,开展案例分析。【结果】左转非机动车信号灯在时间上明确了非机动车的通行权,其设置能显著降低非机动车冲突率,在平峰、高峰时段非机动车冲突率分别降低了40.11%、25.27%。在直行相位末期、左转相位即将启亮时,设置组的左转非机动车在待行区等待,冲突率降为0;而对比组近50%的非机动车违规左转,冲突严重。设置左转非机动车信号灯的改善效果随非机动车流量的增大呈先增加后降低趋势,而随机动车流量的增大呈逐步波动下降趋势。【结论】本研究揭示了非机动车左转信号灯的设置对减少交叉口交通冲突的影响,可为城市交叉口非机动车交通安全管控提供有益参考。