Objective The Hengjian uranium deposit is a typical hydrothermal deposit in the Xiangshan uranium ore field.The uranium mineralization ages of the Xiangshan deposits are poorly constrained,and only a few mineralizatio...Objective The Hengjian uranium deposit is a typical hydrothermal deposit in the Xiangshan uranium ore field.The uranium mineralization ages of the Xiangshan deposits are poorly constrained,and only a few mineralization ages using the pitchblende U–Pb method have been published.These ages are commonly discordant and dispersed for abundant inclusions and an open U–Pb system.Zircon grains after strong hydrothermal alteration are usually characterized by high common Pb contents,and their U–Pb isochron ages recorded the hydrothermal alteration event without interference of common Pb components.The Hengjian gray/grayish-green granite porphyry experienced strong alteration by hydrothermal fluids during the pervasive uranium mineralization in the Xiangshan uranium ore field.Uranium mineralization in the Hengjian deposit may had different stages,and strong hydromicatization alteration occurred at a relatively early stage.Their altered zircon U–Pb isochron ages possibly represent relatively early mineralization age of the Xiangshan uranium deposits.Altered zircon grains from the Hengjian granite porphyry were analyzed using the secondary ion mass spectrometry(SIMS)U-Pb method in this study,and U–Pb isochron ages were measured to constrain the relatively early mineralization age of the Hengjian uranium deposit.展开更多
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating wa...Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.展开更多
The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eight...The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.展开更多
U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using...U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.展开更多
By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山), three different crust levels of extension movement have been recognized in sequence from the deep to the sh...By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山), three different crust levels of extension movement have been recognized in sequence from the deep to the shallow:① low-angle ductile detachment shearing with top to the NW; ② low-angle normal fault with top to the NW or NWW in brittle or brittle-ductile transition domain; ③ high-angle brittle normal fault with top to the W or NWW. Two samples were chosen for zircon U-Pb age dating to constrain the activity age of the Shangma fault. A bedding intrusive granitoid pegmatite vein that is parallel to the foliation of the low-angle ductile detachment shear zone of the country rock exhibits a lotus-joint type of boudinage deformation, showing syn-tectonic emplacing at the end of the ductile deformation period and deformation in the brittle-ductile transition domain. The zircon U-Pb dating of this granitoid pegmatite vein gives an age of (125.9±4.2) Ma, which expresses the extension in the brittle-ductile transition domain of the Shangma fault. The other sample, which is collected from a granite pluton cutting the foliation of the low-angle ductile detachment shear zone, gives a zircon U-Pb age of (118.8±4.1) Ma, constraining the end of the ductile detachment shearing. Then the transformation age from ductile to brittle deformation can be constrained between 126-119 Ma. Combined with the previous researches, the formation of the Luotian (罗田) dome, which is locatedto the east of the Shangma fault, can be constrained during 150-126 Ma. This study gives a new time constraint to the evolution of the Dabie orogenic belt.展开更多
The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the M...The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.展开更多
Zircon grains were selected from two types of ultrahigh-pressure(UHP)eclogites,coarse-grained phengite eclogite and fine-grained massive eclogite,in the Yukahe area,the western part of the North Qaidam UHP metamorphic...Zircon grains were selected from two types of ultrahigh-pressure(UHP)eclogites,coarse-grained phengite eclogite and fine-grained massive eclogite,in the Yukahe area,the western part of the North Qaidam UHP metamorphic belt.Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector,planar or misty internal textures on the cathodoluminescence(CL)images.The contents of REE and HREE of the core parts of grains range from 173 to 1680μg/g and 170 to 1634μg/g,respectively,in phengite eclogite,and from 37 to 2640(g/g and 25.7 to 1824μg/g,respectively,in massive eclogite.The core parts exhibit HREE-enriched patterns,representing the residual zircons of protolith of the Yukahe eclogite.The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts.They vary from 13.1 to 89.5(g/g and 12.5 to 85.7μg/g,respectively,in phengite eclogite,and from 9.92 to 45.8μg/g and 9.18 to 43.8(g/g,respectively,in massive eclogite.Negative Eu anomalies and Th/U ratios decrease from core to rim.Positive Eu anomalies are shown in some grains.These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage,and the zircons formed under eclogite facies conditions.LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783―793 Ma and 748―759 Ma in the Neo-proterozoic.The weighted mean age of the metamorphic ages(434±2 Ma)may represent the UHP metamorphic age of the Yukahe eclogites.The metamorphic age is well consistent with their direct country rocks of gneisses(431(3 Ma and 432±19 Ma)and coesite-bearing pelitic schist in the Yematan UHP eclogite section(423―440 Ma).These age data together with field observation and lithology,allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic,therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.展开更多
The North Tianshan Orogenic Belt contains the youngest ophiolites in the Tianshan and provides some information on timing of the last closure of the Junggar-Balkhash Ocean. LA-ICP-MS zircon U-Pb dating was conducted t...The North Tianshan Orogenic Belt contains the youngest ophiolites in the Tianshan and provides some information on timing of the last closure of the Junggar-Balkhash Ocean. LA-ICP-MS zircon U-Pb dating was conducted to define the formation age of the Arbasay Formation in the Shichang Region of North Tianshan, which is exposed near the suture zone but its age remains debated. The Arbasay Formation is mainly composed of volcanic and volcaniclastic rocks with tuft interlayers. The zircons from the tufts yield two age populations of 315 ± 3 Ma and 304 ± 2 Ma, constraining the commencement and demise timings of volcanism, respectively. Furthermore, zircon U-Pb age spectra of the tuffaceous sandstones display the youngest peak age at 308 Ma, indicating a 〈 308 Ma age for the depositional age of volcaniclastic rocks. The volcaniclastic rocks therefore were likely to deposit together with the syn-sedimentary volcanism during Late Carboniferous. This means that the Arbasay Formation in Shichang Region should be re-assigned to Late Carboniferous in age. Given that the Arbasay Formation was likely to be formed during the tectonic transition from compression to extension, the Junggar-Balkhash Ocean possibly closed during Late Carboniferous.展开更多
Gyirong basin and its adjacent area are located at a special position in the Himalayan orogen, where the south Tibetan detachment system (STDS) and N-S trending rift converged. The north Himalayan orogen here can be d...Gyirong basin and its adjacent area are located at a special position in the Himalayan orogen, where the south Tibetan detachment system (STDS) and N-S trending rift converged. The north Himalayan orogen here can be divided into five petrologic-tectonic units successively from south to north: 1) the Greater Himalayan crystalline complex (GHC); 2) the STDS shear zone; 3) the Tethyan Himalayan sedimentary sequence (THS); 4) the late Cenozoic sedimentary basins, such as Gyirong and Oma basins; and 5) the Malashan gneiss dome. Structural studies show that this area experienced four stages of deformation: 1) the earlier south-directed thrusting, preserved both in the GHC and THS; 2) top-down-to-north slip along the STDS, normal faults related to this slip formed the early controlling structures of the Cenozoic basins,and the tilted pattern of the blocks between the basins indicated a north-directed slip; 3) east-west extension, the resultant N-S trending normal fault formed the eastern boundary of the basins; and 4) late gravitational collapse. Zircon SHRIMP U-Pb dating on the syn-deformational (leuco-) granite along the STDS indicates that the major activity of the STDS occurred at ca. 26 Ma, but its onset may have begun as early as ca. 36 Ma.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0602600)Project of Nuclear Power Development(No.HXS1403)Project of Core Competency Improvement(No.LTC1605).
文摘Objective The Hengjian uranium deposit is a typical hydrothermal deposit in the Xiangshan uranium ore field.The uranium mineralization ages of the Xiangshan deposits are poorly constrained,and only a few mineralization ages using the pitchblende U–Pb method have been published.These ages are commonly discordant and dispersed for abundant inclusions and an open U–Pb system.Zircon grains after strong hydrothermal alteration are usually characterized by high common Pb contents,and their U–Pb isochron ages recorded the hydrothermal alteration event without interference of common Pb components.The Hengjian gray/grayish-green granite porphyry experienced strong alteration by hydrothermal fluids during the pervasive uranium mineralization in the Xiangshan uranium ore field.Uranium mineralization in the Hengjian deposit may had different stages,and strong hydromicatization alteration occurred at a relatively early stage.Their altered zircon U–Pb isochron ages possibly represent relatively early mineralization age of the Xiangshan uranium deposits.Altered zircon grains from the Hengjian granite porphyry were analyzed using the secondary ion mass spectrometry(SIMS)U-Pb method in this study,and U–Pb isochron ages were measured to constrain the relatively early mineralization age of the Hengjian uranium deposit.
文摘Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.
基金This study was supported by the Major State Basic Rsearch Program of China(grant G1999043211)National Natural Science Foundation of China(grant 40272088).
文摘The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.
基金supported by a grant from the Korea Research Foundation (NRF-2014R1A1A2059895)partly supported by the cooperative research program of the Earthquake Research Institute, The University of Tokyo, Japan
文摘U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.
基金the National Key Science Foundation of China (No.40334037)the National Natural Science Foundation of China (No.40672137)
文摘By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山), three different crust levels of extension movement have been recognized in sequence from the deep to the shallow:① low-angle ductile detachment shearing with top to the NW; ② low-angle normal fault with top to the NW or NWW in brittle or brittle-ductile transition domain; ③ high-angle brittle normal fault with top to the W or NWW. Two samples were chosen for zircon U-Pb age dating to constrain the activity age of the Shangma fault. A bedding intrusive granitoid pegmatite vein that is parallel to the foliation of the low-angle ductile detachment shear zone of the country rock exhibits a lotus-joint type of boudinage deformation, showing syn-tectonic emplacing at the end of the ductile deformation period and deformation in the brittle-ductile transition domain. The zircon U-Pb dating of this granitoid pegmatite vein gives an age of (125.9±4.2) Ma, which expresses the extension in the brittle-ductile transition domain of the Shangma fault. The other sample, which is collected from a granite pluton cutting the foliation of the low-angle ductile detachment shear zone, gives a zircon U-Pb age of (118.8±4.1) Ma, constraining the end of the ductile detachment shearing. Then the transformation age from ductile to brittle deformation can be constrained between 126-119 Ma. Combined with the previous researches, the formation of the Luotian (罗田) dome, which is locatedto the east of the Shangma fault, can be constrained during 150-126 Ma. This study gives a new time constraint to the evolution of the Dabie orogenic belt.
基金JGM by the US National Science Foundation Grant EAR09-10888HRX by the National Natural Science Foundation of China Grant 41974078。
文摘The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.
基金Supported by the National Natural Science Foundation of China(Grant Nos.40472043,40372088 and 40572111)the Key Project of Chinese Ministry of Edu-cation(Grant No.306021)the National Basic Research Program of China(Grant No.G1999075508)
文摘Zircon grains were selected from two types of ultrahigh-pressure(UHP)eclogites,coarse-grained phengite eclogite and fine-grained massive eclogite,in the Yukahe area,the western part of the North Qaidam UHP metamorphic belt.Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector,planar or misty internal textures on the cathodoluminescence(CL)images.The contents of REE and HREE of the core parts of grains range from 173 to 1680μg/g and 170 to 1634μg/g,respectively,in phengite eclogite,and from 37 to 2640(g/g and 25.7 to 1824μg/g,respectively,in massive eclogite.The core parts exhibit HREE-enriched patterns,representing the residual zircons of protolith of the Yukahe eclogite.The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts.They vary from 13.1 to 89.5(g/g and 12.5 to 85.7μg/g,respectively,in phengite eclogite,and from 9.92 to 45.8μg/g and 9.18 to 43.8(g/g,respectively,in massive eclogite.Negative Eu anomalies and Th/U ratios decrease from core to rim.Positive Eu anomalies are shown in some grains.These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage,and the zircons formed under eclogite facies conditions.LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783―793 Ma and 748―759 Ma in the Neo-proterozoic.The weighted mean age of the metamorphic ages(434±2 Ma)may represent the UHP metamorphic age of the Yukahe eclogites.The metamorphic age is well consistent with their direct country rocks of gneisses(431(3 Ma and 432±19 Ma)and coesite-bearing pelitic schist in the Yematan UHP eclogite section(423―440 Ma).These age data together with field observation and lithology,allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic,therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.
基金supported by the National Science and Technology Major Project of China (Grant No. 2017ZX05008-001)
文摘The North Tianshan Orogenic Belt contains the youngest ophiolites in the Tianshan and provides some information on timing of the last closure of the Junggar-Balkhash Ocean. LA-ICP-MS zircon U-Pb dating was conducted to define the formation age of the Arbasay Formation in the Shichang Region of North Tianshan, which is exposed near the suture zone but its age remains debated. The Arbasay Formation is mainly composed of volcanic and volcaniclastic rocks with tuft interlayers. The zircons from the tufts yield two age populations of 315 ± 3 Ma and 304 ± 2 Ma, constraining the commencement and demise timings of volcanism, respectively. Furthermore, zircon U-Pb age spectra of the tuffaceous sandstones display the youngest peak age at 308 Ma, indicating a 〈 308 Ma age for the depositional age of volcaniclastic rocks. The volcaniclastic rocks therefore were likely to deposit together with the syn-sedimentary volcanism during Late Carboniferous. This means that the Arbasay Formation in Shichang Region should be re-assigned to Late Carboniferous in age. Given that the Arbasay Formation was likely to be formed during the tectonic transition from compression to extension, the Junggar-Balkhash Ocean possibly closed during Late Carboniferous.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40821002, 40572115)
文摘Gyirong basin and its adjacent area are located at a special position in the Himalayan orogen, where the south Tibetan detachment system (STDS) and N-S trending rift converged. The north Himalayan orogen here can be divided into five petrologic-tectonic units successively from south to north: 1) the Greater Himalayan crystalline complex (GHC); 2) the STDS shear zone; 3) the Tethyan Himalayan sedimentary sequence (THS); 4) the late Cenozoic sedimentary basins, such as Gyirong and Oma basins; and 5) the Malashan gneiss dome. Structural studies show that this area experienced four stages of deformation: 1) the earlier south-directed thrusting, preserved both in the GHC and THS; 2) top-down-to-north slip along the STDS, normal faults related to this slip formed the early controlling structures of the Cenozoic basins,and the tilted pattern of the blocks between the basins indicated a north-directed slip; 3) east-west extension, the resultant N-S trending normal fault formed the eastern boundary of the basins; and 4) late gravitational collapse. Zircon SHRIMP U-Pb dating on the syn-deformational (leuco-) granite along the STDS indicates that the major activity of the STDS occurred at ca. 26 Ma, but its onset may have begun as early as ca. 36 Ma.