This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
The Northern Qilian high-pressure metamorphic belt has experienced multipledeformation-metamorphism, which consists of at least four stages. In 550.8-526 Ma, eclogites wereformed. High temperature and pressure caused ...The Northern Qilian high-pressure metamorphic belt has experienced multipledeformation-metamorphism, which consists of at least four stages. In 550.8-526 Ma, eclogites wereformed. High temperature and pressure caused the escape of a large quantity of gas-liquid fluidsfrom rocks while silicate melt was generated. In the late stage, small amounts of CO_2 and H_2Oinfiltrating along fractures were introduced. In the formation of glaucophane schist (447-362 Ma),devolatilization reactions were dominated during the subduction-uplift stage of the paleoplate. Inthe uplift-exhumation stage (400-380 Ma) the increase of internal space of fractures in the rocksfavoured fluid infiltration and concentration. These fluids participated in hydration reactions inthe retro-metamorphism. The fluids participating in the mineral reactions have the compositions ofCaCl_2-NaCl-H_2O. In subsequent thrusting (<380 Ma), the metamorphic terrain was uplifted to theshallower crust and ductile-shearing deformation took place, which caused mainly dehydrationreactions of minerals. In a near-surface environment the metamorphic terrain experienced brittledeformation, forming many accompanying fractures. Immiscible CO_2 and low-salinity aqueous fluidsoccurred in these secondary microfractures and were trapped and sealed. The thermodynamic conditionsof different deformation-metamorphic stages of the metamorphic terrain were calculated and thecorresponding P-T-t path was deduced, showing that the metamorphic terrain has experienced aclockwise path indicated by T- and P-rising, and T- and P-falling processes. This reveals that thesubduction zone has undergone multiple tectono-dynamic processes, i.e. initial deep burial,subsequent quick uplift and near-surface tectonism.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
The western Tianshan high-pressure(HP) metamorphic belt represents the paleosubduction mélange of paleozoic south Tianshan ocean between the Yili-central Tianshan and Tarim plates. High-pressure veins are extensi...The western Tianshan high-pressure(HP) metamorphic belt represents the paleosubduction mélange of paleozoic south Tianshan ocean between the Yili-central Tianshan and Tarim plates. High-pressure veins are extensively developed in this HP belt. Compared with normal mid-ocean ridge basalt(N-MORB), the high-pressure veins and host rocks are enriched in light rare earth elements(LREE) and incompatible elements. But high-pressure veins show a larger variation than host rocks in total REE abundance. On the trace element spidergram, all the samples are enriched in incompatible elements and show strong positive Pb anomaly relative to N-MORB. The array tendency lines of plots of the HP rocks have apparent slopes on diagram of m(Sr) vs m(Sr)/m(Zr), m(Li) vs m(Li)/m(Y) and (m(Ce)) vs m(Ce)/m(Pb), which indicates that the enrichment in LREE and incompatible elements relative to N-MORB of the HP-metamorphic rocks from western Tianshan is not attributed to magma evolution process of the protolith. High field strength elements, such as Nb, Ta, Ti, Zr and Hf, do not show negative anomaly relative to N-MORB, which is dissimilar to that of island arc basalts. Therefore, the enrichment in LREE and incompatible elements of the HP rocks is not attributed to the enrichment of the source of the protolith. The mass ratios of Rb to Ba, Ce to Pb, Nb to U and Ta to U of high-pressure veins and host rocks are intermediate of mid-ocean ridge basalt or oceanic island basalt and continental crust. The fluids in western Tianshan paleosubduction zones are mixtures of two sources, dehydration or devolatilization of host rocks and of subducted sediments.展开更多
High-pressure(HP)veins were extensively developed in western Tianshan high-pressure(HP)metamorphic belt.The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids.Anal...High-pressure(HP)veins were extensively developed in western Tianshan high-pressure(HP)metamorphic belt.The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids.Analytical data show that the immediately adjacent host-rocks of the studied HP vein are eclogites and gradually turned into blueschist as the distance from the veins increases,which indicates that the vein-forming fluid was derived from adjacent host-rocks;the boundaries between the vein and the host-rocks are sharp,which indicates that the fracture of the host-rocks is brittle during the vein-forming process.It is suggested that this type of HP veins is precipitated from the liquid formed by the dehydration of the host-rocks during the prograde metamorphism from blueschist to eclogite facies,which results in hydrofracturing of the rocks and provides the space for the vein to precipitate.The width of the eclogite-facies host-rocks is usually 1-2 cm,which provides the direct evidence that the fluid flow is on centimeter-scale.展开更多
Pseudosection modeling for the garnet amphibolite samples from the Western Dabie Mountains show they have experienced similar HP metamorphic evolution with that of the adjected eclogites.The common assemblage of
The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Z...The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Zhang et al.,2003;and references there in).Field and petrological features suggest that amphibolites should展开更多
Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, t...Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components.展开更多
In this study,based on the Luo bubble coalescence model,a model correction factor C_e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coup...In this study,based on the Luo bubble coalescence model,a model correction factor C_e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coupled modified population balance model(PBM) with computational fluid dynamics(CFD) was used to simulate a high-pressure bubble column.The simulation results with and without C_e were compared with the experimental data.The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions.These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions.展开更多
This study experimentally investigates a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The upper and lower fluids are water and a NaCl- water solution, respect...This study experimentally investigates a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The upper and lower fluids are water and a NaCl- water solution, respectively, with the lower fluid issued vertically upward from a circular nozzle mounted on the tank bottom. Experimental highlights of the jet behavior and mixing phenomena are classified into three patterns according to the jet Reynolds number and mass concentration of the NaCl-water solution. The internal density current clearly occurs along the density interface, and the maximum jet height is predicted by the Froude number defined by the density difference between the upper and lower fluids. The effect of fluid thickness on the maximum jet height is also clarified.展开更多
This study simulates the behavior of a jet issuing into a two-layer density-stratified fluid in a cylindrical tank and the resulting mixing phenomena. The upper and lower fluids are water and an aqueous solution of so...This study simulates the behavior of a jet issuing into a two-layer density-stratified fluid in a cylindrical tank and the resulting mixing phenomena. The upper and lower fluids are water and an aqueous solution of sodium chloride (NaCl), respectively, with the lower fluid issuing diagonally upward from a nozzle on the bottom of the tank. The angle between the centerline of the jet and the tank bottom is 60°. The phenomena when the Reynolds number Re of the jet is 475, 1426, and 2614 are simulated. The mass concentration of the aqueous solution of NaCl is 0.02. The simulation successfully grasps the jet behavior and the resulting mixing, which agree with the authors’ experimental results at the corresponding Re value. The secondary flows that appear in the horizontal cross-sections consist of a pair of vortices and flows along the tank wall. The secondary flow at the density interface represents the intrusion of an internal density current, which gives rise to mixing along the interface.展开更多
The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technolog...The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.展开更多
This study is concerned with the experimental investigation of a jet issuing diagonally upward into a two-layer density-stratified fluid in a cylindrical tank and the resulting mixing phenomena. The upper and lower fl...This study is concerned with the experimental investigation of a jet issuing diagonally upward into a two-layer density-stratified fluid in a cylindrical tank and the resulting mixing phenomena. The upper and lower fluids are water and an aqueous solution of sodium chloride (NaCl), respectively, and the lower fluid issues from a nozzle on the bottom of the tank. The angle between the centerline of the jet and the bottom of the tank is 60o, and the mass concentration of the NaCl solution is 0.02. The investigation reveals that secondary flow is caused by the jet in the horizontal cross-sections of the tank and that it is composed of a pair of vortices. It confirms that the secondary flow at the density interface corresponds to an internal density current. The investigation also clarifies the effect of the Reynolds number of the jet on mixing between the lower and upper fluids.展开更多
These experimental investigations are designed to study shock wave characteristics and spray structure. Supersonic liq- uid jets injected into ambient fields are empirically studied using projectile impacts in a two-s...These experimental investigations are designed to study shock wave characteristics and spray structure. Supersonic liq- uid jets injected into ambient fields are empirically studied using projectile impacts in a two-stage light gas gun. This study looks primarily at the design of the nozzle assembly, the tip velocity of the high speed jet, the structure of the spray jet and the shock wave generation process. The supersonic liquid jets were visualized using an ultra high-speed camera and the schlieren system for visualization to quantitatively analyze the shock wave angle. The experimental re- sults with straight cone nozzle types and various non-Newtonian fluid viscosities are presented in this paper. The effects of nozzle geometry on the jet behavior are described. The characteristics of the shock wave generation and spray jet structure were found to be significantly related to the nozzle geometry. The expansion gases accelerated the projectile, which had a mass of 6 grams, from 250 m/s. As a result, it was found that the maximum jet velocity appeared in the liquid jet with high viscosity properties. Supersonic liquid jets, which occurred at the leading edge the shock waves and the compression waves in front of the jets, were observed. Also, the shock waves significantly affected the atomization process for each spray droplet.展开更多
Sand jet in non-Newtonian viscoplastic fluid is associated with a number of industrial and engineering applications, including sand capping for the reclamation of oilsands railings ponds and sediment deposition into s...Sand jet in non-Newtonian viscoplastic fluid is associated with a number of industrial and engineering applications, including sand capping for the reclamation of oilsands railings ponds and sediment deposition into soft mud. In this study, several experiments were carried out by depositing circular sand jets vertically into viscoplastic fluids, known as Laponite gel. The deformation regimes of sand jets in the gel were investigated. The yield-gravity parameter of the deformed sand drop in the gel was computed.展开更多
Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian...Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian and viscoelastic jets of polymer nanofibers in electrospinning process is presented in this work. In particular, the effect of non-Newtonian rheology on the jet profile during the electrospinning process is examined. The governing equations of the problem are solved numerically using the Keller-Box method. The effects of yield stress and power-law index on the elongation, velocity, stress and total force are presented and discussed in detail. The results show that by increasing the values of yield stress, the fluid elongation is reduced significantly.展开更多
Surface milling of hardened steel is carried out with copious supply of cutting fluid and is obviously associated with problems related to procurement and storage of cutting fluid. The disposal of cutting fluid has to...Surface milling of hardened steel is carried out with copious supply of cutting fluid and is obviously associated with problems related to procurement and storage of cutting fluid. The disposal of cutting fluid has to comply with environmental legislation such as OSHA regulations. The present investigation proposes an environment friendly minimal pulsed jet cutting fluid application scheme for surface milling of AISI4340 steel with a hardness of 45 HRC using commercially available carbide tools. This scheme can be implemented as such on the shop floor with out the need for any major alternations on the existing facilities and it was observed that the new scheme is not only environment friendly but also provided better cutting performance when compared to conventional wet milling which requires copious supply of cutting fluid.展开更多
Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is conside...Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.展开更多
This study experimentally investigates the mixing of two-layer density-stratified fluid in a cylindrical tank by a diagonal jet.The upper and lower fluids are water and an aqueous solution of sodium chloride(NaCl),res...This study experimentally investigates the mixing of two-layer density-stratified fluid in a cylindrical tank by a diagonal jet.The upper and lower fluids are water and an aqueous solution of sodium chloride(NaCl),respectively,and the lower fluid issues from a nozzle on the tank bottom.The angle between the jet centerline and the tank bottom is 60°,and the mass concentration of the NaCl solution is 0.02.The mixing in cases that the Reynolds numbers of the jets are 713,2319,and 3565 is investigated.The velocity fields in the central vertical cross-section are measured with a PIV(particle imaging velocimetry)system by tracing nylon particles with the diameter of 80μm.The concentration fields in the section are visualized using Rhodamine B as the fluorescent dye.They are also measured using PLIF(planer laser induced fluorescence)from visualized images and the progresses of the mixing are evaluated quantitatively.The investigation clarifies the relationship between the mixing phenomena and the Reynolds number of the jet.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
文摘The Northern Qilian high-pressure metamorphic belt has experienced multipledeformation-metamorphism, which consists of at least four stages. In 550.8-526 Ma, eclogites wereformed. High temperature and pressure caused the escape of a large quantity of gas-liquid fluidsfrom rocks while silicate melt was generated. In the late stage, small amounts of CO_2 and H_2Oinfiltrating along fractures were introduced. In the formation of glaucophane schist (447-362 Ma),devolatilization reactions were dominated during the subduction-uplift stage of the paleoplate. Inthe uplift-exhumation stage (400-380 Ma) the increase of internal space of fractures in the rocksfavoured fluid infiltration and concentration. These fluids participated in hydration reactions inthe retro-metamorphism. The fluids participating in the mineral reactions have the compositions ofCaCl_2-NaCl-H_2O. In subsequent thrusting (<380 Ma), the metamorphic terrain was uplifted to theshallower crust and ductile-shearing deformation took place, which caused mainly dehydrationreactions of minerals. In a near-surface environment the metamorphic terrain experienced brittledeformation, forming many accompanying fractures. Immiscible CO_2 and low-salinity aqueous fluidsoccurred in these secondary microfractures and were trapped and sealed. The thermodynamic conditionsof different deformation-metamorphic stages of the metamorphic terrain were calculated and thecorresponding P-T-t path was deduced, showing that the metamorphic terrain has experienced aclockwise path indicated by T- and P-rising, and T- and P-falling processes. This reveals that thesubduction zone has undergone multiple tectono-dynamic processes, i.e. initial deep burial,subsequent quick uplift and near-surface tectonism.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
基金Preoject(2001CB409803) supported by the National Key Fundamental Research and Development Program of China
文摘The western Tianshan high-pressure(HP) metamorphic belt represents the paleosubduction mélange of paleozoic south Tianshan ocean between the Yili-central Tianshan and Tarim plates. High-pressure veins are extensively developed in this HP belt. Compared with normal mid-ocean ridge basalt(N-MORB), the high-pressure veins and host rocks are enriched in light rare earth elements(LREE) and incompatible elements. But high-pressure veins show a larger variation than host rocks in total REE abundance. On the trace element spidergram, all the samples are enriched in incompatible elements and show strong positive Pb anomaly relative to N-MORB. The array tendency lines of plots of the HP rocks have apparent slopes on diagram of m(Sr) vs m(Sr)/m(Zr), m(Li) vs m(Li)/m(Y) and (m(Ce)) vs m(Ce)/m(Pb), which indicates that the enrichment in LREE and incompatible elements relative to N-MORB of the HP-metamorphic rocks from western Tianshan is not attributed to magma evolution process of the protolith. High field strength elements, such as Nb, Ta, Ti, Zr and Hf, do not show negative anomaly relative to N-MORB, which is dissimilar to that of island arc basalts. Therefore, the enrichment in LREE and incompatible elements of the HP rocks is not attributed to the enrichment of the source of the protolith. The mass ratios of Rb to Ba, Ce to Pb, Nb to U and Ta to U of high-pressure veins and host rocks are intermediate of mid-ocean ridge basalt or oceanic island basalt and continental crust. The fluids in western Tianshan paleosubduction zones are mixtures of two sources, dehydration or devolatilization of host rocks and of subducted sediments.
基金Project(2001CB409803)supported by the Major State Basic Research Development Program of China
文摘High-pressure(HP)veins were extensively developed in western Tianshan high-pressure(HP)metamorphic belt.The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids.Analytical data show that the immediately adjacent host-rocks of the studied HP vein are eclogites and gradually turned into blueschist as the distance from the veins increases,which indicates that the vein-forming fluid was derived from adjacent host-rocks;the boundaries between the vein and the host-rocks are sharp,which indicates that the fracture of the host-rocks is brittle during the vein-forming process.It is suggested that this type of HP veins is precipitated from the liquid formed by the dehydration of the host-rocks during the prograde metamorphism from blueschist to eclogite facies,which results in hydrofracturing of the rocks and provides the space for the vein to precipitate.The width of the eclogite-facies host-rocks is usually 1-2 cm,which provides the direct evidence that the fluid flow is on centimeter-scale.
文摘Pseudosection modeling for the garnet amphibolite samples from the Western Dabie Mountains show they have experienced similar HP metamorphic evolution with that of the adjected eclogites.The common assemblage of
文摘The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Zhang et al.,2003;and references there in).Field and petrological features suggest that amphibolites should
基金supported by the National Natural Science Foundation of China (Grant Nos.50375056, 50775081, 51075007)the National High-Technology Research and Development Program of China (Grant No.2006AA09Z238)+1 种基金the New Century Excellent Talents in University of State Education Ministry (Grant No.NCET-07-0330)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (Grant No.20090203)
文摘Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components.
基金Supported by the National Natural Science Foundation of China(91634101)The Project of Construction of Innovative TeamsTeacher Career Development for Universities and Colleges under Beijing Municipality(IDHT20180508)
文摘In this study,based on the Luo bubble coalescence model,a model correction factor C_e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coupled modified population balance model(PBM) with computational fluid dynamics(CFD) was used to simulate a high-pressure bubble column.The simulation results with and without C_e were compared with the experimental data.The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions.These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions.
文摘This study experimentally investigates a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The upper and lower fluids are water and a NaCl- water solution, respectively, with the lower fluid issued vertically upward from a circular nozzle mounted on the tank bottom. Experimental highlights of the jet behavior and mixing phenomena are classified into three patterns according to the jet Reynolds number and mass concentration of the NaCl-water solution. The internal density current clearly occurs along the density interface, and the maximum jet height is predicted by the Froude number defined by the density difference between the upper and lower fluids. The effect of fluid thickness on the maximum jet height is also clarified.
文摘This study simulates the behavior of a jet issuing into a two-layer density-stratified fluid in a cylindrical tank and the resulting mixing phenomena. The upper and lower fluids are water and an aqueous solution of sodium chloride (NaCl), respectively, with the lower fluid issuing diagonally upward from a nozzle on the bottom of the tank. The angle between the centerline of the jet and the tank bottom is 60°. The phenomena when the Reynolds number Re of the jet is 475, 1426, and 2614 are simulated. The mass concentration of the aqueous solution of NaCl is 0.02. The simulation successfully grasps the jet behavior and the resulting mixing, which agree with the authors’ experimental results at the corresponding Re value. The secondary flows that appear in the horizontal cross-sections consist of a pair of vortices and flows along the tank wall. The secondary flow at the density interface represents the intrusion of an internal density current, which gives rise to mixing along the interface.
基金Project(2010CB630800)supported by the National Basic Research Program of ChinaProject(N100307003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.
文摘This study is concerned with the experimental investigation of a jet issuing diagonally upward into a two-layer density-stratified fluid in a cylindrical tank and the resulting mixing phenomena. The upper and lower fluids are water and an aqueous solution of sodium chloride (NaCl), respectively, and the lower fluid issues from a nozzle on the bottom of the tank. The angle between the centerline of the jet and the bottom of the tank is 60o, and the mass concentration of the NaCl solution is 0.02. The investigation reveals that secondary flow is caused by the jet in the horizontal cross-sections of the tank and that it is composed of a pair of vortices. It confirms that the secondary flow at the density interface corresponds to an internal density current. The investigation also clarifies the effect of the Reynolds number of the jet on mixing between the lower and upper fluids.
文摘These experimental investigations are designed to study shock wave characteristics and spray structure. Supersonic liq- uid jets injected into ambient fields are empirically studied using projectile impacts in a two-stage light gas gun. This study looks primarily at the design of the nozzle assembly, the tip velocity of the high speed jet, the structure of the spray jet and the shock wave generation process. The supersonic liquid jets were visualized using an ultra high-speed camera and the schlieren system for visualization to quantitatively analyze the shock wave angle. The experimental re- sults with straight cone nozzle types and various non-Newtonian fluid viscosities are presented in this paper. The effects of nozzle geometry on the jet behavior are described. The characteristics of the shock wave generation and spray jet structure were found to be significantly related to the nozzle geometry. The expansion gases accelerated the projectile, which had a mass of 6 grams, from 250 m/s. As a result, it was found that the maximum jet velocity appeared in the liquid jet with high viscosity properties. Supersonic liquid jets, which occurred at the leading edge the shock waves and the compression waves in front of the jets, were observed. Also, the shock waves significantly affected the atomization process for each spray droplet.
文摘Sand jet in non-Newtonian viscoplastic fluid is associated with a number of industrial and engineering applications, including sand capping for the reclamation of oilsands railings ponds and sediment deposition into soft mud. In this study, several experiments were carried out by depositing circular sand jets vertically into viscoplastic fluids, known as Laponite gel. The deformation regimes of sand jets in the gel were investigated. The yield-gravity parameter of the deformed sand drop in the gel was computed.
文摘Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian and viscoelastic jets of polymer nanofibers in electrospinning process is presented in this work. In particular, the effect of non-Newtonian rheology on the jet profile during the electrospinning process is examined. The governing equations of the problem are solved numerically using the Keller-Box method. The effects of yield stress and power-law index on the elongation, velocity, stress and total force are presented and discussed in detail. The results show that by increasing the values of yield stress, the fluid elongation is reduced significantly.
文摘Surface milling of hardened steel is carried out with copious supply of cutting fluid and is obviously associated with problems related to procurement and storage of cutting fluid. The disposal of cutting fluid has to comply with environmental legislation such as OSHA regulations. The present investigation proposes an environment friendly minimal pulsed jet cutting fluid application scheme for surface milling of AISI4340 steel with a hardness of 45 HRC using commercially available carbide tools. This scheme can be implemented as such on the shop floor with out the need for any major alternations on the existing facilities and it was observed that the new scheme is not only environment friendly but also provided better cutting performance when compared to conventional wet milling which requires copious supply of cutting fluid.
文摘Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.
文摘This study experimentally investigates the mixing of two-layer density-stratified fluid in a cylindrical tank by a diagonal jet.The upper and lower fluids are water and an aqueous solution of sodium chloride(NaCl),respectively,and the lower fluid issues from a nozzle on the tank bottom.The angle between the jet centerline and the tank bottom is 60°,and the mass concentration of the NaCl solution is 0.02.The mixing in cases that the Reynolds numbers of the jets are 713,2319,and 3565 is investigated.The velocity fields in the central vertical cross-section are measured with a PIV(particle imaging velocimetry)system by tracing nylon particles with the diameter of 80μm.The concentration fields in the section are visualized using Rhodamine B as the fluorescent dye.They are also measured using PLIF(planer laser induced fluorescence)from visualized images and the progresses of the mixing are evaluated quantitatively.The investigation clarifies the relationship between the mixing phenomena and the Reynolds number of the jet.