To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fir...To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.展开更多
The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at var...The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min.展开更多
In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are ...In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.展开更多
The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angle- dispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn...The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angle- dispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of 40.9 GPa-73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed, The systematically experimental investigation confirms the phase transition sequence of Sn asβ-Sn→bct→bco→bco + bcc→bcc upon compression to 108.9 GPa at room temperature.展开更多
In this work,mechanical alloying of the alternating stacked pure Al and Zn thin foils was accomplished via high-pressure torsion(HPT).In the alloyed Al-Zn system,an exotic phase transformation from hexagonal close-pac...In this work,mechanical alloying of the alternating stacked pure Al and Zn thin foils was accomplished via high-pressure torsion(HPT).In the alloyed Al-Zn system,an exotic phase transformation from hexagonal close-packed(HCP)to face-centered cubic(FCC)was identified.The atomic-scale evolution process and underlying mechanism of phase transformation down to atomic scale are provided by molecular dynamics simulation and high-resolution transmission electron microscopy.The HCP→FCC phase transformation was attributed to the sliding of Shockley partial dislocations generated at the Al-Zn grain boundaries,which resulted in an[2110][011]and(0001)/(111)orientation relationship between the two phases.This work provides a new approach for the in-depth study of the solid phase transformation of Al-Zn alloys and also shed lights on understanding the mechanical properties of the HPT processed Al-Zn alloys.展开更多
An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic tempera...An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.展开更多
We investigate the structural and mechanical properties of single-walled carbon nanotubes(SWNTs)under hydrostatic pressure,using constant-pressure molecular dynamics(MD)simulations.We observed that all the SWNTs,indep...We investigate the structural and mechanical properties of single-walled carbon nanotubes(SWNTs)under hydrostatic pressure,using constant-pressure molecular dynamics(MD)simulations.We observed that all the SWNTs,independent of their size and chirality,behave like a classical elastic ring exhibiting a buckling transition transforming their cross-sectional shape from a circle to an ellipse.The simulated critical transition pressure agrees well with the prediction from continuum mechanics theory,even for the smallest SWNT with a radius of 0.4nm.Accompanying the buckling shape transition,there is a mechanical hardness transition,upon which the radial moduli of the SWNTs decrease by two orders of magnitude.Further increase of pressure will eventually lead to a second transition from an elliptical to a peanut shape.The ratio of the second shape transition pressure over the first one is found to be very close to a constant of∼1.2,independent of the tube size and chirality.展开更多
Cubic boron nitride is synthesized by the reaction of Li3N and B203 under high pressure and high temperature (4.0-5.0 GPa, 1350-1500℃). The minimum pressure of cBN formation is 4.0 GPa. The present condition of cBN...Cubic boron nitride is synthesized by the reaction of Li3N and B203 under high pressure and high temperature (4.0-5.0 GPa, 1350-1500℃). The minimum pressure of cBN formation is 4.0 GPa. The present condition of cBN formation is clearly lower than the eutectic temperature of Li3BN2 and BN in the Li3N-hBN system (5.5 GPa, 1610℃). The content of cBN in the sample increases, while the content of hBN decreases with the temperature and pressure. The maximum conversion rate (5.0 GPa, 1500℃) is about 34%, which is higher than that in the hBN-Li3N system. The cBN crystals are octahedral or tetrahedral in shape and approximately 20 μm in diameter.展开更多
基金supported by Science and Technology Projects Funded by State Grid Corporation of China (5200202024105A0000).
文摘To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.
文摘The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min.
基金This work was supported by Science and Technology Project Funded by State Grid Henan Electric Power Company(521702200004)Henan Province Key R&D and Promotion Special(Technology Research)Project(212102210016)Opening Fund of State Key Laboratory of Fire Science(SKLFS)under Grant No.HZ2021-KF11.
文摘In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304294 and 11274281)the Science Fund from the National Laboratory of Shock Wave and Detonation Physics of China(Grant Nos.9140C670201140C67281 and 9140C670102150C67288)
文摘The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angle- dispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of 40.9 GPa-73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed, The systematically experimental investigation confirms the phase transition sequence of Sn asβ-Sn→bct→bco→bco + bcc→bcc upon compression to 108.9 GPa at room temperature.
基金funded by the National Natural Science Foundation of China(Grant Nos.51905215,U22A20187)the Major Scientific and Technological Innovation Project of Shandong Province of China(Grant No.2019JZZY020111).
文摘In this work,mechanical alloying of the alternating stacked pure Al and Zn thin foils was accomplished via high-pressure torsion(HPT).In the alloyed Al-Zn system,an exotic phase transformation from hexagonal close-packed(HCP)to face-centered cubic(FCC)was identified.The atomic-scale evolution process and underlying mechanism of phase transformation down to atomic scale are provided by molecular dynamics simulation and high-resolution transmission electron microscopy.The HCP→FCC phase transformation was attributed to the sliding of Shockley partial dislocations generated at the Al-Zn grain boundaries,which resulted in an[2110][011]and(0001)/(111)orientation relationship between the two phases.This work provides a new approach for the in-depth study of the solid phase transformation of Al-Zn alloys and also shed lights on understanding the mechanical properties of the HPT processed Al-Zn alloys.
基金supported by the National Natural Science Foundation of China (Grant No. 51076147)
文摘An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.
基金supported by DOE(DE-FG03-01ER45875-03ER46027).O.Ald´asPalacios is partly supported by NSF(DMR0307000).
文摘We investigate the structural and mechanical properties of single-walled carbon nanotubes(SWNTs)under hydrostatic pressure,using constant-pressure molecular dynamics(MD)simulations.We observed that all the SWNTs,independent of their size and chirality,behave like a classical elastic ring exhibiting a buckling transition transforming their cross-sectional shape from a circle to an ellipse.The simulated critical transition pressure agrees well with the prediction from continuum mechanics theory,even for the smallest SWNT with a radius of 0.4nm.Accompanying the buckling shape transition,there is a mechanical hardness transition,upon which the radial moduli of the SWNTs decrease by two orders of magnitude.Further increase of pressure will eventually lead to a second transition from an elliptical to a peanut shape.The ratio of the second shape transition pressure over the first one is found to be very close to a constant of∼1.2,independent of the tube size and chirality.
文摘Cubic boron nitride is synthesized by the reaction of Li3N and B203 under high pressure and high temperature (4.0-5.0 GPa, 1350-1500℃). The minimum pressure of cBN formation is 4.0 GPa. The present condition of cBN formation is clearly lower than the eutectic temperature of Li3BN2 and BN in the Li3N-hBN system (5.5 GPa, 1610℃). The content of cBN in the sample increases, while the content of hBN decreases with the temperature and pressure. The maximum conversion rate (5.0 GPa, 1500℃) is about 34%, which is higher than that in the hBN-Li3N system. The cBN crystals are octahedral or tetrahedral in shape and approximately 20 μm in diameter.