This paper introduced the design and application of automatic heating equipment for Auger Emission Spectroscopy(AES).The special electric furnace used in the AES was designed,the Al_2O_3 glass window which allows both...This paper introduced the design and application of automatic heating equipment for Auger Emission Spectroscopy(AES).The special electric furnace used in the AES was designed,the Al_2O_3 glass window which allows both visible light and infrared ray to pass through was made,and the MA2S/B thermo-meter based on infrared ray radiant energy from the sample was selected.The equipment gives dynamic analyzingby AES.It offers possibilities for widening the fields of materials surface and interface research.As a sample,the FeCr_(17) alloy was studied by in situ AES in the heating progress with the help of automaticheating equipment.展开更多
In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experim...In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experiment of tobacco leaf curing was conducted between a bulk curing barn with waste heat of flue gas and conventional bulk curing barn. The results showed that the effect of saving coal in bulk curing barn with waste heat of flue gas was obvious than the contrast. The coal consumption quantity was 1.531 kg per kg of dry tobacco leaf. The saving coal in bulk curing barn with use waste heat of flue gas was 0.181 kg per kg of dry tobacco leaf than the contrast and saving coal rate was 10.57%. The electricity consumption quantity was 0.593 kWh per kg of dry tobacco leaf. The saving elec- tricity quantity in bulk curing barn with use waste heat of flue gas was 0.022 kWh/kg and the saving electricity rate was 3.58% than the contrast. The saving curing cost was 0.158 yuan per kg of dry tobacco leaf and saving cost rate 9.09% in bulk cur- ing barn with use waste heat of flue gas than the contrast. The appearance quality, grade structure and primary chemical composition had no significant difference be- tween bulk curing barn with use waste heat of flue gas and the contrast.展开更多
The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at var...The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
The study was done for high pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured a...The study was done for high pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.展开更多
The magnetic properties and magnetic phase transition critical behavior of Gd_(3)Ga_5O_(12)single crystals subjected to high-pressure heat treatment were investigated.The results show that high-pressure heat treatment...The magnetic properties and magnetic phase transition critical behavior of Gd_(3)Ga_5O_(12)single crystals subjected to high-pressure heat treatment were investigated.The results show that high-pressure heat treatment reduces the Curie temperature and magnetization of the sample.Under a magnetic field change of 5 T,the maximum isothermal magnetic entropy of the sample is approximately 19.73 J/(kg·K).High-pressure heat treatment increases the phase transition temperature range and leads to an increase in the magnetic refrigeration power.Both Gd_(3)Ga_(5)O_(12)single crystals and the high-pressure heat-treated sample undergo a second-order phase transition.The critical behavior of the samples aligns with the mean field model acquired via critical model fitting.This indicates that the samples exhibit long-range exchange interactions in the system near the Curie temperature.Thus,this material can be used as a magnetic refrigerant for low-temperature applications.展开更多
A mobile in-situ testing equipment used to detect geotechnical thermophysical properties was developed. The equipment is composed of a heat pump, frequency pumps, an electric tee joint regulator valve, some sensors, a...A mobile in-situ testing equipment used to detect geotechnical thermophysical properties was developed. The equipment is composed of a heat pump, frequency pumps, an electric tee joint regulator valve, some sensors, an electric control system, data acquisition and control system, which can do tests under the condition of extracting and storing subsurface heat. Applying the line source and the cylinder source heat transfer model, and combining the parameters estimation, the average thermophysieal property parameters of rock and soil will be calculated, which provides the basis for designing the ground source heat pump systems.展开更多
基金Project Sponsored by National Sience and Technology Ministry(JG-98-14)
文摘This paper introduced the design and application of automatic heating equipment for Auger Emission Spectroscopy(AES).The special electric furnace used in the AES was designed,the Al_2O_3 glass window which allows both visible light and infrared ray to pass through was made,and the MA2S/B thermo-meter based on infrared ray radiant energy from the sample was selected.The equipment gives dynamic analyzingby AES.It offers possibilities for widening the fields of materials surface and interface research.As a sample,the FeCr_(17) alloy was studied by in situ AES in the heating progress with the help of automaticheating equipment.
基金Supported by Hebei Industrial Co.,LTD.of China Tobacco(111201315524)Qiannan Co.LTD.Of Guizhou Industrial Co.,LTD.,China Tobacco([2012]17)~~
文摘In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experiment of tobacco leaf curing was conducted between a bulk curing barn with waste heat of flue gas and conventional bulk curing barn. The results showed that the effect of saving coal in bulk curing barn with waste heat of flue gas was obvious than the contrast. The coal consumption quantity was 1.531 kg per kg of dry tobacco leaf. The saving coal in bulk curing barn with use waste heat of flue gas was 0.181 kg per kg of dry tobacco leaf than the contrast and saving coal rate was 10.57%. The electricity consumption quantity was 0.593 kWh per kg of dry tobacco leaf. The saving elec- tricity quantity in bulk curing barn with use waste heat of flue gas was 0.022 kWh/kg and the saving electricity rate was 3.58% than the contrast. The saving curing cost was 0.158 yuan per kg of dry tobacco leaf and saving cost rate 9.09% in bulk cur- ing barn with use waste heat of flue gas than the contrast. The appearance quality, grade structure and primary chemical composition had no significant difference be- tween bulk curing barn with use waste heat of flue gas and the contrast.
文摘The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
文摘The study was done for high pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.
基金Project supported by the Guangxi Natural Science Foundation(AD20297001,AD20297014)the National Natural Science Foundation of China(51562032)。
文摘The magnetic properties and magnetic phase transition critical behavior of Gd_(3)Ga_5O_(12)single crystals subjected to high-pressure heat treatment were investigated.The results show that high-pressure heat treatment reduces the Curie temperature and magnetization of the sample.Under a magnetic field change of 5 T,the maximum isothermal magnetic entropy of the sample is approximately 19.73 J/(kg·K).High-pressure heat treatment increases the phase transition temperature range and leads to an increase in the magnetic refrigeration power.Both Gd_(3)Ga_(5)O_(12)single crystals and the high-pressure heat-treated sample undergo a second-order phase transition.The critical behavior of the samples aligns with the mean field model acquired via critical model fitting.This indicates that the samples exhibit long-range exchange interactions in the system near the Curie temperature.Thus,this material can be used as a magnetic refrigerant for low-temperature applications.
基金Supported by Special Project of Public Sector Funding for Scientific Research,Ministry of Land and Resources,China(No.200811066)
文摘A mobile in-situ testing equipment used to detect geotechnical thermophysical properties was developed. The equipment is composed of a heat pump, frequency pumps, an electric tee joint regulator valve, some sensors, an electric control system, data acquisition and control system, which can do tests under the condition of extracting and storing subsurface heat. Applying the line source and the cylinder source heat transfer model, and combining the parameters estimation, the average thermophysieal property parameters of rock and soil will be calculated, which provides the basis for designing the ground source heat pump systems.