Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necess...Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed ...Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.展开更多
The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages i...The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
A physical model test has been conducted to study the oil diffusion from the submarine pipeline under water flow.The crude oil in the flume is spilled from a leakage point of the pipeline and diffused from the seabed ...A physical model test has been conducted to study the oil diffusion from the submarine pipeline under water flow.The crude oil in the flume is spilled from a leakage point of the pipeline and diffused from the seabed to the surface. By the non-contact optical measuring technology, an image acquisition and data analysis system is designed to explore the spilled mechanism and characteristic. The oil trajectory, velocity and the rising time to the surface are obtained through this system. The influence of the water flow and the spilled discharge on the behavior of the spilled oil are analyzed from both qualitative and quantitative perspectives. The sensitivity study of the characteristic physical quantities to various factors are presented afterward. The spilled oil under water is mainly distributed in the form of the scattered particles with different sizes. The rising process of the oil can be divided into three stages: full, dispersion and aggregation period. The spilled discharge is the primary factor affecting the rising time of the oil particles. In the rising process of the oil particles, the vertical velocity of the oil is mainly affected by the spilled discharge, and the transverse velocity is more dependent on the water velocity. The deviation of the transverse oil velocity is much larger than that of the rising time and the vertical oil velocity. The study can provide a theoretical reference for the prediction system of oil spill emergency.展开更多
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N...Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.展开更多
On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolutio...On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.展开更多
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet...Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.展开更多
To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fir...To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of ...At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%.展开更多
Corrosion inhibition characteristics of two biomass derived extracts from outer leaves of Brassica oleracea (BO) and Citrus paradise mesocarps (CPM) on pipeline steel were investigated using modified gravimetric metho...Corrosion inhibition characteristics of two biomass derived extracts from outer leaves of Brassica oleracea (BO) and Citrus paradise mesocarps (CPM) on pipeline steel were investigated using modified gravimetric method at ambient temperature (28 ± °C). Petroleum pipeline water was used to simulate a pseudo-anaerobic corrosion cell. The result obtained showed that corrosion was a continuous process in the closed system, while BO and CPM showed near equivalence corrosion inhibition efficiency of 91.45% and 89.44% respectively at the concentrations studied. The thermodynamic data suggests inhibition to be through molecular adsorption on metal surface.展开更多
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in...Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.展开更多
In recent years, the extraction of fossil resources, especially oil and gas in deep and ultra-deep water areas has been playing a more important role and been paid more attention to. For this reason, the working depth...In recent years, the extraction of fossil resources, especially oil and gas in deep and ultra-deep water areas has been playing a more important role and been paid more attention to. For this reason, the working depth of submarine pipelines, which are used for the transportation of oil and gas, has been increasing sharply. As the main failure pattern of deep-water pipelines, buckling and its propagation problem have drawn more attention of many research institutions and engineering units around the world. Based on the existing research, the summary of experiments and their outcomes of deep-water pipeline buckling failure is made in this paper. Research status and developing prospects of the experiments of buckling propagation and buckle arrestor are discussed in detail.展开更多
In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are ...In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.展开更多
Structural failure of buried cast/ductile iron water mains and tanks due to corrosion attacks manifests in leaks and is common in most cities throughout Nigeria. The appropriate corrective action, which aims to restor...Structural failure of buried cast/ductile iron water mains and tanks due to corrosion attacks manifests in leaks and is common in most cities throughout Nigeria. The appropriate corrective action, which aims to restore pipe/tank integrity is usually based on proper understanding of the degree of corrosiveness of the soil. In an attempt to determine the potential corrosiveness of the soil to buried metallic structures in Bayelsa State, surface geoelectrical sounding was carried out. Twenty-five Schlumberger Vertical Electrical Soundings (VES) was carried out in the freshwater and meander belt geomorphic zone and the salt water mangrove swamp and estuary complex of the state using a maximum current electrode separation ranging from 200 - 400 m. The data obtained was interpreted by computer iterative modeling using a 1D inversion technique software (1X1D, Interpex, USA). The results show a high degree of heterogeneity, both laterally and vertically, which is typical of a complex depositional environment. Generally, the sub-soil condition within the expected depth of installation of water mains and storage tanks (0 - 10 m) is slightly or moderately aggressive (effective aggressivity) in the freshwater and meander belt geomorphic zone but is very strongly aggressive in the salt water mangrove swamp and estuary complex. Corrosion cells which may lead to significant corrosion failures may occur in the vicinities of strongly aggressive stations. This poses a significant corrosion risk to metallic water pipes and storage tanks. Current day design should therefore either mandate the use of a non-metallic piping product (water mains) or cathodic protection system. Prediction of potential corrosiveness of a soil and thus the application of proper corrosion control measures will not only protect the environment from spillages but will also avert cost of repair, clean-up and replacement.展开更多
文摘Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
文摘Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.
基金support from Subtopics of National Science and Technology Major Project(2011ZX05026-004-03)the National Natural Science Foundation of China (51104167)
文摘The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
基金The National Natural Science Foundation of China under contract No.51609168the Science and Technology Program of CNOOC Limited under contract No.YXKY-2016-2Y-07+2 种基金the Open Fund of State Key Laboratory of Coastal and Offshore Engineering under contract No.LP1608the National Basic Research Program(973 Program)of China under contract No.2014CB046804the National Science and Technology Major Project under contract No.2016ZX05057020
文摘A physical model test has been conducted to study the oil diffusion from the submarine pipeline under water flow.The crude oil in the flume is spilled from a leakage point of the pipeline and diffused from the seabed to the surface. By the non-contact optical measuring technology, an image acquisition and data analysis system is designed to explore the spilled mechanism and characteristic. The oil trajectory, velocity and the rising time to the surface are obtained through this system. The influence of the water flow and the spilled discharge on the behavior of the spilled oil are analyzed from both qualitative and quantitative perspectives. The sensitivity study of the characteristic physical quantities to various factors are presented afterward. The spilled oil under water is mainly distributed in the form of the scattered particles with different sizes. The rising process of the oil can be divided into three stages: full, dispersion and aggregation period. The spilled discharge is the primary factor affecting the rising time of the oil particles. In the rising process of the oil particles, the vertical velocity of the oil is mainly affected by the spilled discharge, and the transverse velocity is more dependent on the water velocity. The deviation of the transverse oil velocity is much larger than that of the rising time and the vertical oil velocity. The study can provide a theoretical reference for the prediction system of oil spill emergency.
基金This work was supported by the National Natural Science Foundation of China(51874332,51991363)the CNPC's Major Science and Technology Projects(ZD2019-184-003)+1 种基金the Fundamental Research Funds for Central Universities(20CX05008A)“14th Five-Year plan”forward-looking basic major science and technology project of CNPC(2021DJ4901).
文摘Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.
基金Natural Science Foundation of China (40675013)Foundation project of Nanjing University of Information Science & TechnologyProject on natural science for universities and colleges in Jiangsu province
文摘On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.
基金financially supported by the National Basic Research Program of China (No. 2013CBA01803)the National Natural Science Foundation of China (No. 41101065)and the CAS "Equipment Development Project for Scientific Research" (No. YZ201523)
文摘Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.
基金supported by Science and Technology Projects Funded by State Grid Corporation of China (5200202024105A0000).
文摘To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
基金supported by the three funds:Industry-University-research Project of Anhui Jianzhu University HYB20210116National Key Research and Development Project of China No.2017YFC0704100(entitled New Generation Intelligent Building Platform Techniques)Research Project of Anhui Jianzhu University jy2021-c-017(Project Name:Research and Application ofWater Distribution Network Leakage Detection System Based on DMA Partition).
文摘At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%.
文摘Corrosion inhibition characteristics of two biomass derived extracts from outer leaves of Brassica oleracea (BO) and Citrus paradise mesocarps (CPM) on pipeline steel were investigated using modified gravimetric method at ambient temperature (28 ± °C). Petroleum pipeline water was used to simulate a pseudo-anaerobic corrosion cell. The result obtained showed that corrosion was a continuous process in the closed system, while BO and CPM showed near equivalence corrosion inhibition efficiency of 91.45% and 89.44% respectively at the concentrations studied. The thermodynamic data suggests inhibition to be through molecular adsorption on metal surface.
基金funded by the National Natural Science Foundation of China(42076217,41976205)Shandong Provincial Taishan Scholars Special Expert Project (ts201712079)+1 种基金Marine Geological Survey Program (DD20190231)Shandong Natural Science Foundation(ZR2017BD024)。
文摘Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.
基金Supported by the National Natural Science Foundation of China(No.51239008)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Basic Research Program of China(“973”Program,No.2014CB046805)
文摘In recent years, the extraction of fossil resources, especially oil and gas in deep and ultra-deep water areas has been playing a more important role and been paid more attention to. For this reason, the working depth of submarine pipelines, which are used for the transportation of oil and gas, has been increasing sharply. As the main failure pattern of deep-water pipelines, buckling and its propagation problem have drawn more attention of many research institutions and engineering units around the world. Based on the existing research, the summary of experiments and their outcomes of deep-water pipeline buckling failure is made in this paper. Research status and developing prospects of the experiments of buckling propagation and buckle arrestor are discussed in detail.
基金This work was supported by Science and Technology Project Funded by State Grid Henan Electric Power Company(521702200004)Henan Province Key R&D and Promotion Special(Technology Research)Project(212102210016)Opening Fund of State Key Laboratory of Fire Science(SKLFS)under Grant No.HZ2021-KF11.
文摘In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.
文摘Structural failure of buried cast/ductile iron water mains and tanks due to corrosion attacks manifests in leaks and is common in most cities throughout Nigeria. The appropriate corrective action, which aims to restore pipe/tank integrity is usually based on proper understanding of the degree of corrosiveness of the soil. In an attempt to determine the potential corrosiveness of the soil to buried metallic structures in Bayelsa State, surface geoelectrical sounding was carried out. Twenty-five Schlumberger Vertical Electrical Soundings (VES) was carried out in the freshwater and meander belt geomorphic zone and the salt water mangrove swamp and estuary complex of the state using a maximum current electrode separation ranging from 200 - 400 m. The data obtained was interpreted by computer iterative modeling using a 1D inversion technique software (1X1D, Interpex, USA). The results show a high degree of heterogeneity, both laterally and vertically, which is typical of a complex depositional environment. Generally, the sub-soil condition within the expected depth of installation of water mains and storage tanks (0 - 10 m) is slightly or moderately aggressive (effective aggressivity) in the freshwater and meander belt geomorphic zone but is very strongly aggressive in the salt water mangrove swamp and estuary complex. Corrosion cells which may lead to significant corrosion failures may occur in the vicinities of strongly aggressive stations. This poses a significant corrosion risk to metallic water pipes and storage tanks. Current day design should therefore either mandate the use of a non-metallic piping product (water mains) or cathodic protection system. Prediction of potential corrosiveness of a soil and thus the application of proper corrosion control measures will not only protect the environment from spillages but will also avert cost of repair, clean-up and replacement.