This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolutio...On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.展开更多
To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fir...To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in ...Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.展开更多
Injection recovery is an important measure for increasing the oil recovery rate of an oil field. One way is that centrifugal pumps or plunger pumps are used in an injection station to responsible for injection over a ...Injection recovery is an important measure for increasing the oil recovery rate of an oil field. One way is that centrifugal pumps or plunger pumps are used in an injection station to responsible for injection over a large area under the same pressure. This method is ineffective for low-permeability layers. For the oilfields in dispersed distribution in the marginal areas of Daqing, the low water-absorbing section needs an injection with a high delivery pressure and a low discharge capacity; another way is to install the submersible electric pump upside down, but because the submersible electric pump and the motor are underground, it is difficult for installation and maintenance. Introduced in this paper is the development and application of a surface high-pressure injection device with a submersible electric pump. Bysuccessful resolving some problems, such as the axial force of the submersible electric pump, sealing, level regulation of the pump, coaxiality and vibration, the device has the good points of running smoothly, moving easily, installation and maintains quickly and long period of running. This device can effectively solve the injection of the low water-absorbing section and of oilfields in dispersed locations. The recovery rate of oilfields is also enhanced.展开更多
In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are ...In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.展开更多
The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The resul...The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.展开更多
To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is car...To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is carried out experimentally.It is found that there is a top value of the coefficient of performance(COP)when the system runs at 95 Hz of frequency.The relationships between the COP and compressor frequency,condensation pressure,evaporation pressure,condensation water temperature rise,and discharge temperature are discussed and analyzed at 95 Hz.And the COP of the HFC125 transcritical cycle is also compared with that of a R410 subcritical heat pump under the same conditions.The results indicate that there exists an optimum frequency for a better COP,and the system COP shows an increasing tendency with the decrease in condensation pressure and compressor ratio while the evaporation pressure remains invariant,and the COP decreases rapidly when cooling water temperature rises over 47.5 ℃.Compared with the R410A sub-critical cycle,the COP of HFC125 transcritical cycle significantly increases by 12% on average.展开更多
Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of v...Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate, output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.展开更多
The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages i...The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.展开更多
A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coeff...A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides becomes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller coefficient of performance.Under an exhaust temperature of 36 ℃,the coefficient of performance decreases from 1.66 to 1.22 when the temperature of water increases from 28 ℃ to 46 ℃ with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of thermoelectric heat pump water heater is more coefficient.展开更多
Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjus...Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.展开更多
In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbul...In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.展开更多
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s...The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.展开更多
During Jan.1995 to Dec.1996, monthly investigations on the zoobenthic communities of West Lake, samples were collected from six sampling stations. A total of 26 species of macrozoobenthos were identified. The seasonal...During Jan.1995 to Dec.1996, monthly investigations on the zoobenthic communities of West Lake, samples were collected from six sampling stations. A total of 26 species of macrozoobenthos were identified. The seasonal changes in density and biomass of zoobenthos in this lake were analyzed. The annual mean densities were 980~2751 ind/m\+2 and mean biomass was 19.69-122.80 g/m\+2. The densities in winter and early spring were higher than those in summer and autumn. Comparative study of theprevious data (1982 to 1983) collected by the authors, showed that the succession of zoobenthic communities, dominated by \%Procludius choreus\% in density and \%Bellamya purificata\% in biomass, had been occurred in Xiaonan sub\|lake after Qiantang River water was drawn into it; and that the species and biomass of zoobenthos were then increased and the density was decreased. In other sub\|lakes, the dominant species were \%Limnodrilus hoffmeisteri\% and \%Tokunagayusurika akamusi \%in density and \%Branchiura sowerbyi\% and \%Tokunagayusurika akamusi \%in biomass. The water quality was bad in these sub\|lakes because these dominant species are indicators of eutrophication. According to the Margalef index and Goodnight index, West Lake is still an eutrophic lake. Only the water quality of Xiaonan sub\|lake was improved after water drawn from the Qiantang River was introduced into it.展开更多
The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat...The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.展开更多
Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In w...Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
基金Natural Science Foundation of China (40675013)Foundation project of Nanjing University of Information Science & TechnologyProject on natural science for universities and colleges in Jiangsu province
文摘On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.
基金supported by Science and Technology Projects Funded by State Grid Corporation of China (5200202024105A0000).
文摘To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
文摘Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.
文摘Injection recovery is an important measure for increasing the oil recovery rate of an oil field. One way is that centrifugal pumps or plunger pumps are used in an injection station to responsible for injection over a large area under the same pressure. This method is ineffective for low-permeability layers. For the oilfields in dispersed distribution in the marginal areas of Daqing, the low water-absorbing section needs an injection with a high delivery pressure and a low discharge capacity; another way is to install the submersible electric pump upside down, but because the submersible electric pump and the motor are underground, it is difficult for installation and maintenance. Introduced in this paper is the development and application of a surface high-pressure injection device with a submersible electric pump. Bysuccessful resolving some problems, such as the axial force of the submersible electric pump, sealing, level regulation of the pump, coaxiality and vibration, the device has the good points of running smoothly, moving easily, installation and maintains quickly and long period of running. This device can effectively solve the injection of the low water-absorbing section and of oilfields in dispersed locations. The recovery rate of oilfields is also enhanced.
基金This work was supported by Science and Technology Project Funded by State Grid Henan Electric Power Company(521702200004)Henan Province Key R&D and Promotion Special(Technology Research)Project(212102210016)Opening Fund of State Key Laboratory of Fire Science(SKLFS)under Grant No.HZ2021-KF11.
文摘In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.
基金Supported by Scientific Research Fund of Ningxia University [(E) ndzr09-23]
文摘The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.
基金The National Natural Science Foundation of China(No.50676059)
文摘To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is carried out experimentally.It is found that there is a top value of the coefficient of performance(COP)when the system runs at 95 Hz of frequency.The relationships between the COP and compressor frequency,condensation pressure,evaporation pressure,condensation water temperature rise,and discharge temperature are discussed and analyzed at 95 Hz.And the COP of the HFC125 transcritical cycle is also compared with that of a R410 subcritical heat pump under the same conditions.The results indicate that there exists an optimum frequency for a better COP,and the system COP shows an increasing tendency with the decrease in condensation pressure and compressor ratio while the evaporation pressure remains invariant,and the COP decreases rapidly when cooling water temperature rises over 47.5 ℃.Compared with the R410A sub-critical cycle,the COP of HFC125 transcritical cycle significantly increases by 12% on average.
基金supported by National Natural Science Foundation of China (Grant No. 50575107)
文摘Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate, output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.
基金support from Subtopics of National Science and Technology Major Project(2011ZX05026-004-03)the National Natural Science Foundation of China (51104167)
文摘The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.
基金Supported by Hunan Science and Technology Office(06wk3023)National High Technology Research and Development Program of China(2006AA05Z229)Project-sponsored by SRFfor ROCS,SEM
文摘A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides becomes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller coefficient of performance.Under an exhaust temperature of 36 ℃,the coefficient of performance decreases from 1.66 to 1.22 when the temperature of water increases from 28 ℃ to 46 ℃ with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of thermoelectric heat pump water heater is more coefficient.
基金supported by Author Special Foundation of National Excellent Doctoral Dissertation of China (Grant No. 2007B41)Jiangsu Provincial Foundation of "333 Talents Engineering" of ChinaJiangsu Provincial Academic Header Foundation of Qinglan Engineering of China
文摘Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.
基金Project supported by the Priority Academic Development Program of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0680) supported by Postgraduate Innovation Foundation of Jiangsu Province, ChinaProject(12JDG082) supported by the Advanced Talent Foundation of Jiangsu University, China
文摘In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.
基金This project is supported by National Natural Science Foundation of China(No.10342003).
文摘The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.
文摘During Jan.1995 to Dec.1996, monthly investigations on the zoobenthic communities of West Lake, samples were collected from six sampling stations. A total of 26 species of macrozoobenthos were identified. The seasonal changes in density and biomass of zoobenthos in this lake were analyzed. The annual mean densities were 980~2751 ind/m\+2 and mean biomass was 19.69-122.80 g/m\+2. The densities in winter and early spring were higher than those in summer and autumn. Comparative study of theprevious data (1982 to 1983) collected by the authors, showed that the succession of zoobenthic communities, dominated by \%Procludius choreus\% in density and \%Bellamya purificata\% in biomass, had been occurred in Xiaonan sub\|lake after Qiantang River water was drawn into it; and that the species and biomass of zoobenthos were then increased and the density was decreased. In other sub\|lakes, the dominant species were \%Limnodrilus hoffmeisteri\% and \%Tokunagayusurika akamusi \%in density and \%Branchiura sowerbyi\% and \%Tokunagayusurika akamusi \%in biomass. The water quality was bad in these sub\|lakes because these dominant species are indicators of eutrophication. According to the Margalef index and Goodnight index, West Lake is still an eutrophic lake. Only the water quality of Xiaonan sub\|lake was improved after water drawn from the Qiantang River was introduced into it.
基金Project(2011-0021376) supported by Basic Science Program through the National Research Foundation (NRF) Funded by the Ministry of Education,Science and Technology of Korea
文摘The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.
文摘Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.