Thermoresponsive core-shell microspheres are prepared and functionalized with 3-aminophenylboronic acid to make them responsive to glucose.The volume phase transition of the resulting particles is shifted to a lower t...Thermoresponsive core-shell microspheres are prepared and functionalized with 3-aminophenylboronic acid to make them responsive to glucose.The volume phase transition of the resulting particles is shifted to a lower temperature and a clear swelling is caused by the presence of glucose.The particles after the functionalization preserved their capability to form crystalline colloidal arrays.The changes of their properties may be used in the design of glucose sensors.展开更多
Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been propose...Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, Pt GH9B5 and At GH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, Pt GH9C2 and At GH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module.The poplar endoglucanases were expressed in Arabidopsis using both a 35 S promoter and the Arabidopsis secondary cell wall-specific Ces A8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAiconstruct was created to downregulate At GH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, micro fibril angle, and proportion of cell wall carbohydrates. Misregulation of Pt GH9B5/At GH9B5 resulted in changes in xylose content, while misregulation of Pt GH9C2/At GH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.展开更多
基金Financial support from NSERC of Canada,FRQNT of Quebec,the Canada Research Chair program and NNSF of China (Overseas collaborativegrant# 21228401)The authors are members of CSACS funded by FRQNTGRSTB funded by FRSQ
文摘Thermoresponsive core-shell microspheres are prepared and functionalized with 3-aminophenylboronic acid to make them responsive to glucose.The volume phase transition of the resulting particles is shifted to a lower temperature and a clear swelling is caused by the presence of glucose.The particles after the functionalization preserved their capability to form crystalline colloidal arrays.The changes of their properties may be used in the design of glucose sensors.
文摘Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, Pt GH9B5 and At GH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, Pt GH9C2 and At GH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module.The poplar endoglucanases were expressed in Arabidopsis using both a 35 S promoter and the Arabidopsis secondary cell wall-specific Ces A8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAiconstruct was created to downregulate At GH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, micro fibril angle, and proportion of cell wall carbohydrates. Misregulation of Pt GH9B5/At GH9B5 resulted in changes in xylose content, while misregulation of Pt GH9C2/At GH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.