期刊文献+
共找到64,883篇文章
< 1 2 250 >
每页显示 20 50 100
Production of high-purity hydrogen from paper recycling black liquor via sorption enhanced steam reforming
1
作者 Hanke Li Shijie Wu +5 位作者 Chengxiong Dang Guangxing Yang Yonghai Cao Hongjuan Wang Feng Peng Hao Yu 《Green Energy & Environment》 SCIE CSCD 2021年第5期771-779,共9页
Environmentally friendly and energy saving treatment of black liquor(BL),a massively produced waste in Kraft papermaking process,still remains a big challenge.Here,by adopting a NieCaOeCa_(12)Al_(14)O_(33) bifunctiona... Environmentally friendly and energy saving treatment of black liquor(BL),a massively produced waste in Kraft papermaking process,still remains a big challenge.Here,by adopting a NieCaOeCa_(12)Al_(14)O_(33) bifunctional catalyst derived from hydrotalcite-like materials,we demonstrate the feasibility of producing high-purity H_(2)(~96%)with 0.9 mol H_(2) mol^(-1) C yield via the sorption enhanced steam reforming(SESR)of BL.The SESRBL performance in terms of H_(2) production maintained stable for 5 cycles,but declined from the 6th cycle.XRD,Raman spectroscopy,elemental analysis and energy dispersive techniques were employed to rationalize the deactivation of the catalyst.It was revealed that gradual sintering and agglomeration of Ni and CaO and associated coking played important roles in catalyst deactivation and performance degradation of SESRBL,while deposition of Na and K from the BL might also be responsible for the declined performance.On the other hand,it was demonstrated that the SESRBL process could effectively reduce the emission of sulfur species by storing it as CaSO_(3).Our results highlight a promising alternative for BL treatment and H_(2) production,thereby being beneficial for pollution control and environment governance in the context of mitigation of climate change. 展开更多
关键词 Black liquor high-purity hydrogen Sorption enhanced steam reforming Sulfur removal
下载PDF
Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol 被引量:2
2
作者 Xiang Wu Sufang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期315-321,共7页
The sorption-enhanced steam reforming process of methanol(SESRP-Me OH) to produce high-purity H2 was thermodynamically and experimentally studied.Thermodynamic calculations showed that at a CO2 adsorption ratio of 9... The sorption-enhanced steam reforming process of methanol(SESRP-Me OH) to produce high-purity H2 was thermodynamically and experimentally studied.Thermodynamic calculations showed that at a CO2 adsorption ratio of 95%,product gas contains 98.36% H2,32.8 ppm CO under temperature of 130°C and steam-to-methanol(S/M) molar ratio of 2.However,without adsorption-enhanced,the product gas contains nearly 74.99% H2 with 24.96% CO2 and 525 ppm CO.To verify the thermodynamic calculation results,experiments were performed in a fixed-bed reactor loaded with commercial Cu O/Zn O/Al2O3 methanol reforming catalyst and 22% K2CO3-promoted hydrotalcite as CO2 adsorbent.Experimental results showed that 99.61% H2 could be obtained by SESRP-Me OH at reaction temperature of 230°C and S/M of 2.Under the same CH3 OH conversion,the reaction temperature decreased by almost 50°C and H2 concentration increased of more than 20%using SESRP-Me OH compared with solely steam reforming of methanol.The characterization of the adsorbent and catalyst showed that the adsorbent showed good stability while the catalyst was seriously sintered under the high regeneration temperature of the adsorbent. 展开更多
关键词 hydrogen METHANOL sorption-enhanced reforming carbon dioxide HYDROTALCITE
下载PDF
Multiple factors influencing high-purity indium electrolytic refining
3
作者 Hong-Qiang Fan Fei Li +5 位作者 Hong-Xing Zheng Wu-ji Pan Mei-Zhen Wu Yashar Behnamian Ju-Bo Peng Dong-Hai Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期148-160,共13页
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th... The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior. 展开更多
关键词 high-purity indium ELECTROLYSIS Multiple factors ELECTROCHEMISTRY Purification
下载PDF
Polydopamine-modified metal-organic frameworks nanoparticles enhance the corrosion resistance and bioactivity of polycaprolactone coating on high-purity magnesium
4
作者 Qingyun Fu Shaojie He +7 位作者 Junjie Yang Ziyu Su Ping Li Xincheng Yu Weihong Jin Shulan Xu Zhentao Yu Dingsheng Zha 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2070-2089,共20页
Biodegradable magnesium(Mg)and its alloys exhibit excellent biocompatibility and mechanical compatibility,demonstrating tremendous potential for applications in orthopedics.However,the rapid degradation rate has limit... Biodegradable magnesium(Mg)and its alloys exhibit excellent biocompatibility and mechanical compatibility,demonstrating tremendous potential for applications in orthopedics.However,the rapid degradation rate has limited their clinical application.Polycaprolactone(PCL)is commonly employed as a polymer coating to impede the rapid degradation of Mg.Unfortunately,its long-term anti-corrosion capability and bioactivity are inadequate.To address these issues,polydopamine(PDA)-modified zeolitic imidazolate framework-8(PZIF-8)bioactive nanoparticles are fabricated and incorporated into the PCL coating.The PZIF-8 particles,featuring catechol motifs,can enhance the compactness of the PCL coating,reduce its defects,and possess biomineralization ability,thereby effectively improving its anti-corrosive and bioactive properties.Moreover,the active substances released from the degradation of the PZIF-8 particles such as Zn^(2+)and PDA are beneficial for osteogenesis.The corrosion tests indicate that the corrosion current density of PCL-treated sample decreases by more than one order of magnitude and the amount of H_(2)released decreases from 0.23±0.12 to 0.08±0.08 ml cm^(-2)after doping with the PZIF-8.Furthermore,the improved corrosion resistance and released PDA and Zn^(2+)from the coating can promote osteogenic differentiation by up-regulating the expression of alkaline phosphatase activity,related osteogenic genes,and proteins.In addition,in vivo implantation experiments in rabbit femur defects further offer strong evidence that the doping of PZIF-8 nanoparticles accelerates bone reconstruction of the PCL coating.In summary,this work implies a new strategy to fabricate a PCL-based coating on Mg-based implants by introducing the PZIF-8 particles for orthopedic applications. 展开更多
关键词 POLYDOPAMINE ZIF-8 high-purity magnesium Polycaprolactone coating ANTICORROSION Bone regeneration
下载PDF
Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis
5
作者 Wenxing Cao Jiancheng Shu +5 位作者 Jiaming Chen Zihan Li Songshan Zhou Shushu Liao Mengjun Chen Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期531-538,共8页
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi... Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER. 展开更多
关键词 iron-rich electrolytic manganese residue slurry electrolysis high-purity iron powder leaching efficiency current efficiency
下载PDF
Artificial neural network-based method for discriminating Compton scattering events in high-purity germaniumγ-ray spectrometer
6
作者 Chun-Di Fan Guo-Qiang Zeng +5 位作者 Hao-Wen Deng Lei Yan Jian Yang Chuan-Hao Hu Song Qing Yang Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期64-84,共21页
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul... To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively. 展开更多
关键词 high-purity germaniumγ-ray spectrometer Pulse-shape discrimination Compton scattering Artificial neural network Minimum detectable activity
下载PDF
Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction
7
作者 Shaorou Ke Yajing Zhao +6 位作者 Xin Min Yanghong Li Ruiyu Mi Yangai Liu Xiaowen Wu Minghao Fang Zhaohui Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期182-190,共9页
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s... Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts. 展开更多
关键词 hydrogen evolution reaction ultralow platinum in-situ synthesis ULTRASOUND
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
8
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2
9
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
下载PDF
Valence states, impurities and electrocrystallization behaviors during molten salt electrorefining for preparation of high-purity titanium powder from sponge titanium 被引量:11
10
作者 翁启刚 李瑞迪 +2 位作者 袁铁锤 李健 贺跃辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期553-560,共8页
High-purity titanium powder was prepared by molten salt electrorefining from sponge titanium in NaCl-KCl-TiClx salts. The titanium valence, purity and electrocrystallization during electrolysis process were studied. T... High-purity titanium powder was prepared by molten salt electrorefining from sponge titanium in NaCl-KCl-TiClx salts. The titanium valence, purity and electrocrystallization during electrolysis process were studied. The XPS analysis showed that the titanium valences are mainly +4, +3 and +2 at the earlier, medium and later stages of electrolysis, respectively. During the electrolysis process, the contents of impurities Si, Cr, Mn, Al vary little, and the contents of impurities Fe, Cu, Ni decrease markedly, while the contents of impurities O, N, H increase obviously. The residual impurities are usually distributed in small tunnel of dendritic crystals. Enhancing the electrolysis temperature and prolonging the electrolysis time can increase the titanium particle size. The TEM analysis showed that the electrodeposited titanium is not a single crystal, but contains many nanostructured grains and subgrains, with grain size of 100-500 nm. The electrolysis mechanisms were also discussed. 展开更多
关键词 molten salt electrolysis high-purity titanium powder VALENCE ELECTROCRYSTALLIZATION
下载PDF
Timing of granite pegmatite-type high-purity quartz deposit in the Eastern Qinling,China:constraints from in-situ LA-ICP-MS trace analyses of quartz and monazite U–Pb dating 被引量:6
11
作者 Yong Zhang Haibo Zhao +4 位作者 Lei Liu Jiayong Pan Likuan Zhu Guoqi Liu Xiaotian Zhang 《Acta Geochimica》 EI CAS CSCD 2022年第2期197-207,共11页
Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,an... Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,and the major minerals are quartz(39.8%),K-feldspar(18.8%),albite(36.3%),muscovite(3.4%),and garnet(1.1%).Monazite U–Pb isotopic dating indicates that the No.5 pegmatite from the Eastern Qinling was emplaced at ca.420.2±2.2 Ma,which confirms that highpurity quartz mineralization probably formed during the Early Devonian.In-situ laser ablation inductively coupled plasma mass spectrometry analysis of quartz show that quartz samples from Eastern Qinling have total trace element concentrations(Al,Ti,Sc,Li,B,Cr,Mn,and Fe)ranging from 23.2 to 52.8 ppm,slightly higher than the quartz(impurity element content from 13.4 to 25.9 ppm)of the Spruce Pine high-purity quartz deposit in western North Carolina.The No.5 pegmatite of Eastern Qinling could be defined as one high-purity quartz deposit of China. 展开更多
关键词 MONAZITE LA-ICP-MS U-Pb high-purity quartz Granite pegmatite Eastern Qinling
下载PDF
Preparing high-purity iron by direct reduction?smelting separation of ultra-high-grade iron concentrate 被引量:4
12
作者 Feng Li Qing-jie Zhao +4 位作者 Man-sheng Chu Jue Tang Zheng-gen Liu Jia-xin Wang Sheng-kang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期454-462,共9页
A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced ti... A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future. 展开更多
关键词 ultra-high-grade IRON concentrate high-purity IRON coal-based direct reduction SMELTING SEPARATION pilot test
下载PDF
The Status Quo and Development Trend of High-purity Gold Sputtering Targets 被引量:1
13
作者 YANG Anheng XIE Hongchao ZHU Yong 《贵金属》 CAS CSCD 北大核心 2012年第A01期173-176,共4页
This article gives a brief introduction to manufacturers and markets of sputtering targets as well as the manufacturing technology thereof. Then, it analyzes the application of high-purity gold sputtering targets in t... This article gives a brief introduction to manufacturers and markets of sputtering targets as well as the manufacturing technology thereof. Then, it analyzes the application of high-purity gold sputtering targets in the fields of integrated circuit, information storage, flat panel display, etc. Based on the above, the article analyzes the processing development trend for the high-purity gold sputtering targets in aspects of ultra-high purity, manufacturing technology, analysis and testing technologies. 展开更多
关键词 high-purity gold sputtering targets status quo development trend
下载PDF
Flow stress behavior of high-purity Al-Cu-Mg alloy and microstructure evolution 被引量:3
14
作者 李立 李慧中 +2 位作者 梁霄鹏 黄岚 洪涛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期815-820,共6页
The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to... The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1. 展开更多
关键词 high-purity Al-Cu-Mg alloy hot compression flow stress processing map
下载PDF
Use of various MgO resources for high-purity Mg metal production through molten salt electrolysis and vacuum distillation 被引量:1
15
作者 Hyeong-Jun Jeoung Tae-Hyuk Lee +5 位作者 Youngjae Kim Jin-Young Lee Young Min Kim Toru HOkabe Kyung-Woo Yi Jungshin Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期562-579,共18页
A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted u... A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted using a Cu cathode in MgF2– LiF – KCl molten salt at 1043 K by applying an average current of 1.44 A for 12.5 h. The electrolysis of calcined North Korean magnesite and seawater Mg O clinker yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 89.6–92.4%. The electrolysis of oxidized Mg O-C refractory brick, aged ferronickel slag, and ferronickel slag yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 59.3–92.3%. The vacuum distillation of Mg alloys obtained was conducted at 1300 K for 10 h to produce high-purity Mg metal. After vacuum distillation, Mg metal with a purity of above 99.994% was obtained. Therefore, this study demonstrates the feasibility of the production of high-purity Mg metal from various Mg O resources using a novel electrolytic process with a Cu cathode, followed by vacuum distillation. 展开更多
关键词 high-purity magnesium Magnesium oxide resources Electrolytic process Metal cathode Vacuum distillation
下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:3
16
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane hydrogen generation HYDROLYSIS Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
Atomic Emission Spectrographic Analysis of High-purity Gallium with Prior Partial Dissolution of Matrix
17
作者 陈家英 钟秀霞 梁树权 《Rare Metals》 SCIE EI CAS CSCD 1992年第2期129-134,共6页
An improved method has been developed for enriching and determining trace In,Pt,Sn,Co,Hg,Pb,Ni, Bi,Pd,Cu and Ag in high-purity gallium.Sample was treated by PDM(partial dissolution of matrix)with HCl(11mol/L)-HNO_3(0.... An improved method has been developed for enriching and determining trace In,Pt,Sn,Co,Hg,Pb,Ni, Bi,Pd,Cu and Ag in high-purity gallium.Sample was treated by PDM(partial dissolution of matrix)with HCl(11mol/L)-HNO_3(0.5mol/L)to a small residue of which Ga was then removed by extraction with 1 ml isopropyl ether.The concentrated impurities were determined by AES procedure.The recoveries for the ele- ments at the range of 0.02~0.2 μg are 95~103%;the relative standard deviations for determined impurities overa rangeofn.10^(-7)~n·10^(-8)% are 4.3~12%;the detection limit of most elements can reach n·10^(-7)~ n·10^(-8)% level with the exception of Hg and Pt.This method has been successfully used to analyze many sam- ples sent by factories and institutes. 展开更多
关键词 high-purity gallium Trace elements Atomic emission spectroscopy
下载PDF
Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin,China:Insights from continental scientific drilling 被引量:3
18
作者 Shuang-Biao Han Chao-Han Xiang +3 位作者 Xin Du Lin-Feng Xie Jie Huang Cheng-Shan Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期741-751,共11页
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl... The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas. 展开更多
关键词 Gas compositions Stable isotopes Gas origins hydrogen gas Songliao Basin
下载PDF
Classification and technical target of water electrolysis for hydrogen production 被引量:2
19
作者 Kahyun Ham Sooan Bae Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期554-576,I0012,共24页
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro... Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology. 展开更多
关键词 Water electrolysis hydrogen production Technical target ELECTROCHEMISTRY
下载PDF
Minimizing pest aluminum in magnesium for the production of high-purity titanium
20
作者 Bo Yang Rui Zheng +2 位作者 Ge Wu Zhi-Min Chang Zhi-Wei Shan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4189-4196,共8页
It is practically difficult to find titanium sponges with low and stable aluminum impurities on the market even though it is the precondition to prepare high-purity titanium. Analysis indicates that almost all the alu... It is practically difficult to find titanium sponges with low and stable aluminum impurities on the market even though it is the precondition to prepare high-purity titanium. Analysis indicates that almost all the aluminum impurities in the titanium sponge are inherited from the magnesium used to reduce titanium tetrachloride. However, it remains elusive for decades why magnesium produced through the silicothermic reduction method contains a high content of aluminum impurities with large fluctuations. By recourse to thermodynamic calculations and comparative experiments, we demonstrate that fluorite, a material used as a catalyst in the silicothermic reduction method to produce magnesium, is the chief culprit for the pest aluminum and propose a mechanism to rationalize the observed phenomena. Our findings indicate that one practical way to produce qualified magnesium for the production of high-purity titanium is to abandon fluorite during the production of magnesium with the silicothermic reduction method. 展开更多
关键词 high-purity titanium Titanium sponge MAGNESIUM Aluminum impurity Silicothermic reduction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部