Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti...Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance.展开更多
The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in mate...The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV.展开更多
Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron mic...Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron microscopy(TEM) indicate that the samples have the structure of 2H-MoS2 and the morphology of nanoflakes with the average thickness around 5-10 nm. The results of electrochemical properties indicate that the morphology and size of MoS2 particles have effects on their capacity when they are used as the anode for lithium ion battery. The as-prepared MoS2 samples have high reversible discharge capacity up to 994.6 mA·h·g-1 for the MoS2-1 elec-trode and 930.1 mA·h·g-1 for the MoS2-2 electrode and show excellent cycling performances. The MoS2-1 electrode has a better cycling stability than the MoS2-2 electrode due to their difference in the uniformity of the samples.展开更多
Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive ...Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys.展开更多
Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with...Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with their intrinsic activity,tunable electronic properties,low cost,and abundance reserves,which have attracted intensive attention as alternatives to the low-abundance and high-cost platinum-based catalysts.However,their insufficient catalytic HER activities and stability are the major challenges for them to become practically applicable.Hereby,the MoS_(2)-based electrocatalysts for HER are comprehensively reviewed to explain the fundamental science behind the manipulations of the crystal structure,microstructure,surface,and interface of MoS_(2) in order to enhance its catalytic performance through changing the electrical conductivity,the number of active sites,surface wettability,and the Gibbs free energy for hydrogen adsorption(ΔGH).Recent studies in surface/interface engineering,such as phase engineering,defect engineering,morphology design,and heterostructure construction,are analyzed to reveal the state-of-the-art strategies for designing and preparing the cost-effective and highperformance MoS_(2)-based catalysts through optimizing the charge transfer,surface-active sites,ΔGH,and surface hydrophilicity.Lastly,the perspectives,challenges,and future research directions of HER electrocatalysis are also given to facilitate the further research and development of HER catalysts.展开更多
The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH...The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.展开更多
Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio....Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio. Transition metal dichalcogenides(TMDs), especially MoS2, as one of the 2DMs most often studied, have shown superior activity in electrochemical applications. Recently, combinations of different 2DMs have been widely studied, and they appear to be the most promising strategy available to develop state of the art catalysts for different reactions.In this article, we review the interactions between MoS2 and other materials as well as the novel assembly induced phase transitions of TMDs and their underlying mechanisms. Several methods for inducing the phase transition of TMDs by building MoS2-based heterostructures have been introduced. The electronic coupling between these counterparts has significantly enhanced their conductivity and optimized the energy states of the materials, thus introducing enhanced activity as compared to their original counterparts. The ideas summarized in this article may shed new light on and help to develop next-generation green energy materials by designing and constructing highly active two-dimensional catalysts for efficient water splitting.展开更多
The acoustic-phonon emission from monolayer molybdenum disulfide(ML-MoS_(2))driven by a direct-current electric field is studied theoretically using the Boltzmann equation method.It is found that the Cerenkov emission...The acoustic-phonon emission from monolayer molybdenum disulfide(ML-MoS_(2))driven by a direct-current electric field is studied theoretically using the Boltzmann equation method.It is found that the Cerenkov emission of terahertz acoustic-phonons can be generated when a very weak electric field is applied to ML-MoS_(2).The physical mechanisms of acoustic-phonon emission are analyzed from the perspective of condensed matter physics.The acoustic-phonon emission from ML-MoS_(2)is also compared with those from graphene and GaAs.The results reveal that the frequencies of acousticphonons generated by ML-MoS_(2)are between the frequencies of those generated from GaAs and graphene.The results of this work suggest that the ML-MoS_(2)can make up for graphene and GaAs in respect of acoustic-phonon emission and be used in tunable hypersonic devices such as terahertz sound sources.展开更多
The use of transition metal-activated peroxymonosulfate(PMS)as an advanced oxidation technology has gained recognition.This study developed a catalyst using cobaltDlanthanum bimetallic oxide supported on layered molyb...The use of transition metal-activated peroxymonosulfate(PMS)as an advanced oxidation technology has gained recognition.This study developed a catalyst using cobaltDlanthanum bimetallic oxide supported on layered molybdenum disulfide(Mo S_(2))as a carrier.The CoDLa/Mo S_(2)catalyst was synthesised through coprecipitation,followed by calcination with an optimised metal ratio of Co:La=2:1 to activate PMS and degrade trace chloramphenicol(CAP)in water.The chemical composition of the catalyst was confirmed using X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).At catalyst and PMS dosages of 0.1 and 0.5 g·L^(-1),respectively,the degradation rate of CAP was 95%with in 30 min.The catalyst exhibitedstrong resistance to most interfering anions and maintained a high degradation rate at p H 3D11.Liquid chromatographyDmass spectrometry analysis revealed the potential degradation pathways of CAP in the CoDLa/Mo S_(2)(2:1)/PMS system.For other pollutants,such as oxytetracycline,complete degradation was achieved within 20 min,demonstrating the broad applicability of the CoDLa/Mo S_(2)(2:1)/PMS system for the degradation and removal of antibiotic organic contaminants.展开更多
Inorganic nanoparticles have been proved as powerful lubricant additives at elevated temperature.However,the tribological properties are inevitably impaired due to poor dispersion and insufficient high temperature res...Inorganic nanoparticles have been proved as powerful lubricant additives at elevated temperature.However,the tribological properties are inevitably impaired due to poor dispersion and insufficient high temperature resistance of organic matter modified nanoparticles.Here,we prepare a self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball(MGCB)comprising molybdenum disulfide quantum dot uniformly interspersed on the wrinkled graphene ball.The crumpled ball composite possesses excellent dispersity in polyalkylene glycol base oil without depending on surface modifiers.Compared with the conventional phosphate esters lubricant,our results indicate MGCB could vastly improve the lubrication performance of polyalkylene glycol with an extremely low concentration(0.05 wt%)at elevated temperature(150°C),showing a friction reduction of 47%and a wear reduction of 30%compared with the conventional phosphate esters lubricant(tricresyl phosphate,TCP).This is because crumpled ball potentiates synergistic lubrication effect within the boundary lubrication.Overall,we envision our designed self-dispersed MGCB has significant potential in tribological application at elevated temperature.展开更多
The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy stor...The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.61805134 and No.11974229)Applied Basic Research Program in Shanxi Province,China(No.201801D221016 and No.202103021223254)+2 种基金Scientific and Technological Innovation Pro-grams of Higher Education Institutions in Shanxi(No.2020L0235 and No.2021L257)Linfen Key Re-search and Development Program(No.2028)Graduate Innovation Project in Shanxi Province(No.2022Y498).
文摘Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance.
文摘The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV.
基金Supported partially by the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,Zhejiang University of TechnologyPriority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2009-0094047)
文摘Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron microscopy(TEM) indicate that the samples have the structure of 2H-MoS2 and the morphology of nanoflakes with the average thickness around 5-10 nm. The results of electrochemical properties indicate that the morphology and size of MoS2 particles have effects on their capacity when they are used as the anode for lithium ion battery. The as-prepared MoS2 samples have high reversible discharge capacity up to 994.6 mA·h·g-1 for the MoS2-1 elec-trode and 930.1 mA·h·g-1 for the MoS2-2 electrode and show excellent cycling performances. The MoS2-1 electrode has a better cycling stability than the MoS2-2 electrode due to their difference in the uniformity of the samples.
基金financial support provided by the National Natural Science Foundation of China(Grant No.U1806225)the National Natural Science Foundation of China(Grant No.51908092)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)。
文摘Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys.
基金financially supported by the National Natural Science Foundation of China(Grant No.51572166)the China Postdoctoral Science Foundation(Grant No.2021M702073)+1 种基金the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(Grant No.202002AB080001-1)support from the Program for Professors with Special Appointments(Eastern Scholar:TP2014041)at Shanghai Institutions of Higher Learning。
文摘Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with their intrinsic activity,tunable electronic properties,low cost,and abundance reserves,which have attracted intensive attention as alternatives to the low-abundance and high-cost platinum-based catalysts.However,their insufficient catalytic HER activities and stability are the major challenges for them to become practically applicable.Hereby,the MoS_(2)-based electrocatalysts for HER are comprehensively reviewed to explain the fundamental science behind the manipulations of the crystal structure,microstructure,surface,and interface of MoS_(2) in order to enhance its catalytic performance through changing the electrical conductivity,the number of active sites,surface wettability,and the Gibbs free energy for hydrogen adsorption(ΔGH).Recent studies in surface/interface engineering,such as phase engineering,defect engineering,morphology design,and heterostructure construction,are analyzed to reveal the state-of-the-art strategies for designing and preparing the cost-effective and highperformance MoS_(2)-based catalysts through optimizing the charge transfer,surface-active sites,ΔGH,and surface hydrophilicity.Lastly,the perspectives,challenges,and future research directions of HER electrocatalysis are also given to facilitate the further research and development of HER catalysts.
基金financial support for this work from the Strategic Priority Research Program of CAS(XDB36030000)the National Natural Science Foundation of China(21422303,21573049,21872043,22002028)+3 种基金the National Basic Research Plan of China(2016YFA0201600)the Beijing Natural Science Foundation(2142036)the Youth Innovation Promotion Associationthe Special Program of “One Belt One Road”of CAS。
文摘The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.
基金supported by the National Key Research and Development Program of China (2016YFFA0200400)the Natural Science Foundation of China (51571100, 51872116, and 51602305)+3 种基金the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universitiessupport from the Australian Research Council (ARC, FT150100450 and IH150100006)the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039)
文摘Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio. Transition metal dichalcogenides(TMDs), especially MoS2, as one of the 2DMs most often studied, have shown superior activity in electrochemical applications. Recently, combinations of different 2DMs have been widely studied, and they appear to be the most promising strategy available to develop state of the art catalysts for different reactions.In this article, we review the interactions between MoS2 and other materials as well as the novel assembly induced phase transitions of TMDs and their underlying mechanisms. Several methods for inducing the phase transition of TMDs by building MoS2-based heterostructures have been introduced. The electronic coupling between these counterparts has significantly enhanced their conductivity and optimized the energy states of the materials, thus introducing enhanced activity as compared to their original counterparts. The ideas summarized in this article may shed new light on and help to develop next-generation green energy materials by designing and constructing highly active two-dimensional catalysts for efficient water splitting.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604192)the Fundamental Research Program of Shanxi Province,China(Grant No.202103021224250)+1 种基金the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province of China(Grant No.2020L0242)the Start-up funding from Shanxi Normal University(Grant No.0505/02070351)
文摘The acoustic-phonon emission from monolayer molybdenum disulfide(ML-MoS_(2))driven by a direct-current electric field is studied theoretically using the Boltzmann equation method.It is found that the Cerenkov emission of terahertz acoustic-phonons can be generated when a very weak electric field is applied to ML-MoS_(2).The physical mechanisms of acoustic-phonon emission are analyzed from the perspective of condensed matter physics.The acoustic-phonon emission from ML-MoS_(2)is also compared with those from graphene and GaAs.The results reveal that the frequencies of acousticphonons generated by ML-MoS_(2)are between the frequencies of those generated from GaAs and graphene.The results of this work suggest that the ML-MoS_(2)can make up for graphene and GaAs in respect of acoustic-phonon emission and be used in tunable hypersonic devices such as terahertz sound sources.
基金supported by the National Key R&D Program of China(No.2019YFC1804400)the Double First-Class University Plan(No.C176220100042)。
文摘The use of transition metal-activated peroxymonosulfate(PMS)as an advanced oxidation technology has gained recognition.This study developed a catalyst using cobaltDlanthanum bimetallic oxide supported on layered molybdenum disulfide(Mo S_(2))as a carrier.The CoDLa/Mo S_(2)catalyst was synthesised through coprecipitation,followed by calcination with an optimised metal ratio of Co:La=2:1 to activate PMS and degrade trace chloramphenicol(CAP)in water.The chemical composition of the catalyst was confirmed using X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).At catalyst and PMS dosages of 0.1 and 0.5 g·L^(-1),respectively,the degradation rate of CAP was 95%with in 30 min.The catalyst exhibitedstrong resistance to most interfering anions and maintained a high degradation rate at p H 3D11.Liquid chromatographyDmass spectrometry analysis revealed the potential degradation pathways of CAP in the CoDLa/Mo S_(2)(2:1)/PMS system.For other pollutants,such as oxytetracycline,complete degradation was achieved within 20 min,demonstrating the broad applicability of the CoDLa/Mo S_(2)(2:1)/PMS system for the degradation and removal of antibiotic organic contaminants.
基金the financial support provided by the National Natural Science Foundation of China(52105180,52305189)the Key Technologies R&D Program of Henan Province(212102210125).
文摘Inorganic nanoparticles have been proved as powerful lubricant additives at elevated temperature.However,the tribological properties are inevitably impaired due to poor dispersion and insufficient high temperature resistance of organic matter modified nanoparticles.Here,we prepare a self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball(MGCB)comprising molybdenum disulfide quantum dot uniformly interspersed on the wrinkled graphene ball.The crumpled ball composite possesses excellent dispersity in polyalkylene glycol base oil without depending on surface modifiers.Compared with the conventional phosphate esters lubricant,our results indicate MGCB could vastly improve the lubrication performance of polyalkylene glycol with an extremely low concentration(0.05 wt%)at elevated temperature(150°C),showing a friction reduction of 47%and a wear reduction of 30%compared with the conventional phosphate esters lubricant(tricresyl phosphate,TCP).This is because crumpled ball potentiates synergistic lubrication effect within the boundary lubrication.Overall,we envision our designed self-dispersed MGCB has significant potential in tribological application at elevated temperature.
基金the Outstanding Youth Project of Guangdong Provincial Natural Science Foundation,China(Grant No.2022B1515020020)the National Natural Science Foundation of China(Grant No.2225071013)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120079)the Funding by Science and Technology Projects in Guangzhou,China(No.202206050003)the Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells,China.
文摘The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.