Magnesium ion batteries(MIBs)are a potential field for the energy storage of the future but are restricted by insufficient rate capability and rapid capacity degradation.Magnesium-sodium hybrid ion batteries(MSHBs)are...Magnesium ion batteries(MIBs)are a potential field for the energy storage of the future but are restricted by insufficient rate capability and rapid capacity degradation.Magnesium-sodium hybrid ion batteries(MSHBs)are an effective way to address these problems.Here,we report a new type of MSHBs that use layered sodium vanadate((Na,Mn)V_(8)O_(20)·5H_(2)O,Mn-NVO)cathodes coupled with an organic 3,4,9,10-perylenetetracarboxylic diimide(PTCDI)anode in Mg^(2+)/Na^(+)hybrid electrolytes.During electrochemical cycling,Mg^(2+)and Na^(+)co-participate in the cathode reactions,and the introduction of Na^(+)promotes the structural stability of the Mn-NVO cathode,as cleared by several ex-situ characterizations.Consequently,the Mn-NVO cathode presents great specific capacity(249.9 mA h g^(−1)at 300 mA g^(−1))and cycling(1500 cycles at 1500 mA g^(−1))in the Mg^(2+)/Na^(+)hybrid electrolytes.Besides,full battery displays long lifespan with 10,000 cycles at 1000 mA g^(−1).The rate performance and cycling stability of MSHBs have been improved by an economical and scalable method,and the mechanism for these improvements is discussed.展开更多
Based on the investigation of long-life asphalt pavement at home and abroad,the development of long-life asphalt pavement technology in Shandong Province,China is reviewed in this paper.The structural combination char...Based on the investigation of long-life asphalt pavement at home and abroad,the development of long-life asphalt pavement technology in Shandong Province,China is reviewed in this paper.The structural combination char-acteristics of typical long-life asphalt pavement in Shandong Province and their popularization and application are introduced.The application effect of combined base long-life asphalt pavement,which has been widely promoted,is evaluated.At the same time,taking the Binda perpetual pavement test road in Shandong Province as an example,the dynamic response and long-term performance evolution of long-life asphalt pavement are analyzed over a period of more than 17 years.Sections S1,S2,and S3 present information about full-depth asphalt pavement.Section S4 describes combined base asphalt pavement.The results show that the maximum strain of S1–S4 is within the endurance strain limit.S1,S2,S3 and S4 are all expected to be long-life asphalt pavements.In the current study,Sections S1–S4 were maintained in good condition during a service period of more than 17 years with no structural cracks and good deflection,rutting,and IRI indexes.The deflection index was stable without growth,and the IRI was also relatively stable following the opening to traffic.The rutting depth un-derwent a slight cumulative increase within 8 years of opening,and then stabilized.The average rutting depth over the 17-year period was less than 15 mm.Therefore,S1–S4 meet the design standards required for use as long-life pavements.From the perspectives of resource saving,energy saving,and emission reduction and service performance,full-depth asphalt pavement can be considered to represent a new generation of green and durable pavement structures with great future promotion potential.展开更多
To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic an...To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic and lithium ion transport rates and thus an improved high-rate performance. However, our previous synthesized LiFePO4 nanorods only exhibited low high-rate and slightly unstable cycle performance. Possible reasons are the poor crystallization and Fe2+ oxidation of LiFePO4 nanorods prepared by hydrothermal method. In this paper, LiFePO4 nanorods were simply dealt with at 700 ℃ for 4 h under the protection of Ar and H2 mixture gas. The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry(CV). The experimental results indicated that the annealed LiFePO4 nanorods delivered an excellent cycling stability and obviously improved capacity of 150 mA·h·g-1 at 1C, and even 122 mA·h·g-1 at 5C.展开更多
An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric disp...An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric dispersion and sole electronic configuration limit the catalytic benefits and curtail the cell performance.Here,we propose a class of dual-atom catalytic moieties comprising hetero-or homo-atomic pairs anchored on N-doped graphene(NG)to unlock the liquid–solid redox puzzle of sulfur,readily realizing Li-S full cell under high-rate-charging conditions.As for Fe-Ni-NG,in-depth experimental and theoretical analysis reveal that the hetero-atomic orbital coupling leads to altered energy levels,unique electronic structures,and varied Fe oxidation states in comparison with homo-atomic structures(FeFe-NG or Ni-Ni-NG).This would weaken the bonding energy of polysulfide intermediates and thus enable facile electrochemical kinetics to gain rapid liquid-solid Li_(2)S_(4)?Li_(2)S conversion.Encouragingly,a Li-S battery based on the S@Fe-Ni-NG cathode demonstrates unprecedented fast-charging capability,documenting impressive rate performance(542.7 mA h g^(-1)at 10.0 C)and favorable cyclic stability(a capacity decay of 0.016%per cycle over 3000 cycles at 10.0 C).This finding offers insights to the rational design and application of dual-atom mediators for Li-S batteries.展开更多
To move the performance of lithium-ion batteries into the next stage,the modification of the structure of cells is the only choice except for the development of materials exhibiting higher performance.In this review p...To move the performance of lithium-ion batteries into the next stage,the modification of the structure of cells is the only choice except for the development of materials exhibiting higher performance.In this review paper,the employment of through-holing structures of anodes and cathodes prepared with a picosecond pulsed laser has been proposed.The laser system and the structure for improving the battery performance were introduced.The performance of laminated cells constructed with through-holed anodes and cathodes was reviewed from the viewpoints of the improvement of high-rate performance and energy density,removal of unbalanced capacities on both sides of the current collector,even greater high-rate performance by hybridizing cathode materials and removal of irreversible capacity.In conclusion,the points that should be examined and the problem for the through-holed structure to be in practical use are summarized.展开更多
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate...The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally.展开更多
Pseudocapacitive transition metal oxides(PTMOs)have the advantages of high areal capacitance and material density suitable for high-energy supercapacitor devices,but they are typically marred by insufficient rate perf...Pseudocapacitive transition metal oxides(PTMOs)have the advantages of high areal capacitance and material density suitable for high-energy supercapacitor devices,but they are typically marred by insufficient rate performance,which in turn deteriorates cyclic stability at high current levels.Using the example of spinel manganese oxide,herein we demonstrate that a pseudocapacitive oxide electrode of remarkable rate performance and cyclic stability may be realized by adopting oxide nanocrystallites,which are derived based on a novel solution chemistry,and carbon additive(CA)nanoparticles with highly uniform of size distributions.Precisely controlling the particle morphology and size distribution of the active material and conductive additive(CA)in the nanometer range can maximize the density of active material-CA-electrolyte three-phase contact points,thus facilitating synchronized electron and cation flow for the completion of surface faradaic reactions.The resultant Mn3O4 pseudocapacitive electrode exhibits rate capability and cycle stability,including 60%capacity retention at 60 A g-1 and no capacity fade over 100000 cycles under dynamic current densities,far superior to the state-of-the-art PTMO electrodes.The electrode design strategy is in general applicable to pseudocapacitors containing poorly conductive active materials.展开更多
Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries(LIBs)due to their high specific capacity,high voltage,low cost.However,their commercialization is hindered by ...Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries(LIBs)due to their high specific capacity,high voltage,low cost.However,their commercialization is hindered by limited cycle life and poor rate performance.Herein,an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate(LiPP)and spinel phase covered on top of the bulk layered phase,is developed for Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)(LMNO)using Li^(+)-conductor LiPP(denoted as LMNO@S-LiPP).With such a double-layer covered architecture,the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g^(−1)at 1 A·g^(−1)and retains 85.3%of the initial capacity after 300 cycles,so far,the best highrate electrochemical performance of all the previously reported LMNOs.The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg^(−1)(based on total weight of active materials in cathode and anode).Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture,which accelerates Li-ion diffusion,restrains oxygen release,inhibits interfacial side reactions,suppresses structural degradation during cycling.Moreover,this strategy is applicable for other high-energy-density cathodes,such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2),LiCoO_(2).Hence,this work presents a simple,cost-effective,scalable strategy for the development of high-performance cathode materials.展开更多
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit...Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.展开更多
The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroat...The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroatom La^(3+)doping strategy.As demonstrated,La^(3+)with a large radius can be doped successfully into the spinel lattice of(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4),thereby not only causing lattice distortion to increase oxygen vacancies but also refining crystalline grains and improving the specific area.Compared with the(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)anode,the(La_(0.01)CoCrFeMnNi)_(3/5.01)O_(4) anode with moderate doping exhibits excellent cycling performance(1228 mAh·g^(−1)after 400 cycles at 0.2 A·g^(−1))and yields an increase of 75%rate capability at 3 A·g^(−1)(420 mAh·g^(−1)at 3 A·g^(−1)).The desirable kinetic transport of electrons and diffusion of Li+within the moderately La^(3+)-doped anode and the synergistic interfacial pseudocapacitive behavior satisfy the redox reaction at a high rate,thus increasing rate capability.展开更多
Lithium nickel manganese oxide spinel(Li Ni0.5-Mn1.5O4, LNMO) has attracted much attention as the cathode material for rechargeable lithium-ion batteries due to its high energy density and low cost. However, the short...Lithium nickel manganese oxide spinel(Li Ni0.5-Mn1.5O4, LNMO) has attracted much attention as the cathode material for rechargeable lithium-ion batteries due to its high energy density and low cost. However, the short cycle life and poor high-rate capability hinder its commercialization. In this study, we synthesized hollow spherical LNMO built from polyhedral particles. The LNMO hollow structure guarantees sufficient contact with electrolyte and rapid diffusion of lithium ions. To enhance the conductivity, we use carbon nanotubes(CNTs) to modify the surface of the cathode. After CNT modification, the LNMO hollow structure manifests outstanding cycling stability and high-rate capability. It delivers a discharge capacity of 127 m A h g-1 at 5 C, maintaining 104 m A h g-1 after 500 cycles. Even at a high rate of 20 C, a capacity of 121 m A h g-1 can be obtained. The excellent electrochemical performance is ascribed to the unique structure and the enhanced conductivity through CNT modification. It is demonstrated that the CNTmodified hollow spherical LNMO is a promising cathode for lithium ion batteries.展开更多
High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein...High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated.展开更多
Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of b...Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of battery-type anodes hinder their practical application.Herein,phosphorus/nitrogen co-doped hollow carbon fibers(P-HCNFs)are prepared by a facile template method.The stable grape-like structure with continuous and interconnected cavity structure is an ideal scaffold for shortening the ion transport and relieving volume expansion,while the introduction of P atoms and intrinsic N atoms can create abundant extrinsic/intrinsic defects and additional active sites,reducing the K+diffusion barrier and improving the capacitive-controlled capacity.The P-HCNFs delivers a high specific capacity of 310 mAh·g^(-1)at 0.1 A·g^(-1)with remarkable ultra-high-rate performance(140 mAh·g^(-1)at 50 A·g^(-1))and retains an impressive capacity retention of 87%after 10,000 cycles at 10 A·g^(-1).As expected,the as-assembled PIHCs present a high energy density(115.8 Wh·kg^(-1)at 378.0 W·kg^(-1))and excellent capacity retention of 91%after 20,000 cycles.This work not only shows great potential for utilizing heteroatom-doping and structural design strategies to boost potassium storage,but also paves the way for advancing the practicality of high-energy PIHCs devices.展开更多
Aiming to improve the battery performance of lithium-ion batteries(LIBs),modification of the cathodes and anodes of LIBs using laser beams to prepare through-holes,non-through-holes or ditches arranged in grid and lin...Aiming to improve the battery performance of lithium-ion batteries(LIBs),modification of the cathodes and anodes of LIBs using laser beams to prepare through-holes,non-through-holes or ditches arranged in grid and line patterns has been proposed by many researchers and engineers.In this study,a laser processing system attached to rollers,which realizes this modification without large changes in the present mass-production system,was developed.The laser system apparatus comprises roll-to-roll equipment and laser equipment.The roll-to-roll equipment mainly consists of a hollow cylinder with openings on its circumferential surface.Cathode and anode electrodes for LIBs are wound around the cylinder in the longitudinal direction of the electrodes.A pulsed beam reflected from the central axis of the cylinder can continuously open a large number of through-holes in the thin electrodes.Through-holes were formed at a rate of 100000 holes per second on lithium iron phosphate cathodes and graphite anodes with this system.The through-holed cathodes and anodes prepared with this system exhibited higher C-rate performance than nontreated cathodes and anodes.展开更多
Owing to their high theoretical specific capacity and low cost, lithium- and manganese-rich layered oxide (LMR) cathode materials are receiving increasing attention for application in lithium-ion batteries. However, p...Owing to their high theoretical specific capacity and low cost, lithium- and manganese-rich layered oxide (LMR) cathode materials are receiving increasing attention for application in lithium-ion batteries. However, poor lithium ion and electron transport kinetics plus side effects of anion and cation redox reactions hamper power performance and stability of the LMRs. In this study, LMR Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2) was modified by phosphorus (P)-doping to increase Li+ conductivity in the bulk material. This was achieved by increasing the interlayer spacing of the lithium layer, electron transport and structural stability, resulting in improvement of the rate and safety performance. P^(5+) doping increased the distance between the (003) crystal planes from ~0.474 nm to 0.488 nm and enhanced the structural stability by forming strong covalent bonds with oxygen atoms, resulting in an improved rate performance (capacity retention from 38% to 50% at 0.05 C to 5 C) and thermal stability (50% heat release compared with pristine material). First-principles calculations showed the P-doping makes the transfer of excited electrons from the valence band to conduction band easier and P can form a strong covalent bond helping to stabilize material structure. Furthermore, the solid-state electrolyte modified P5+ doped LMR showed an improved cycle performance for up to 200 cycles with capacity retention of 90.5% and enhanced initial coulombic efficiency from 68.5% (pristine) or 81.7% (P-doped LMR) to 88.7%.展开更多
The lithium-oxygen(Li-O_(2))battery is highly promising but suffers from poor cycling life,especially at high rates;hence,the need for high-efficient accelerating agents is crucial.Recently macrocyclic Fe-based redox ...The lithium-oxygen(Li-O_(2))battery is highly promising but suffers from poor cycling life,especially at high rates;hence,the need for high-efficient accelerating agents is crucial.Recently macrocyclic Fe-based redox mediators,such as iron(II)phthalocyanine(FePc)and heme,have been developed and anticipated to be ideal due to their bifunctional charge and superoxide shuttling capabilities.However,they still operate far below expectations,which could result from the low concentrations in electrolyte due to the strongπ-πinteraction at carbon cathode.Herein,the authors report a new type of nonmacrocyclic Fe-based redox mediators,iron(II)acetylacetonate[Fe(acac)2]and iron(II)glycinate[Fe(gly)2],which have weakπ-πinteraction with the carbon cathode,thus,remain at high concentrations in the electrolyte.The Fe(gly)2@Li-O_(2)battery reaches a long life of 321 cycles at 0.5 A g^(−1),which is much superior to the counterpart with the typical macrocyclic FePc,and particularly exhibits a long life of 167 cycles at 2.0 A g^(−1)and 136 cycles at ultrahigh 5.0 A g^(−1).This study demonstrates an efficient strategy to achieve a high-rate performance of Li-O_(2)batteries by developing nonmacrocyclic Fe-based redox mediators with high-efficient electron and superoxide shuttling.展开更多
Uncontrollable Zn dendrites and side reactions seriously downgrade the cycling stability of the Zn anode,and restrict the commercialization of aqueous zinc ion batteries.Here,PAN-based(PAN,PAN/PMMA)nanofiber membranes...Uncontrollable Zn dendrites and side reactions seriously downgrade the cycling stability of the Zn anode,and restrict the commercialization of aqueous zinc ion batteries.Here,PAN-based(PAN,PAN/PMMA)nanofiber membranes with uniform“zincophilic-hydrophobic”sites have been in-situ electrospun on Zn to effectively prevent harmful side reactions and control Zn plating/stripping behavior.The abundant highly-negative functional groups(C≡N and C=O)of PAN/PMMA have strong coordination interactions with Zn2+,which can accelerate Zn2+desolvation and increase the Zn2+migration number.Furthermore,the even distribution of zincophilic sites can help create a uniform Zn deposition environment and enable horizontal Zn deposition.Simultaneously,the inherent“hydrophobicity”of the nonpolar carbon skeleton in PAN/PMMA can prevent Zn corrosion and hydrogen evolution reaction(HER)side reactions,thus improving the cycling stability of the Zn anode.As a result,PAN/PMMA@Zn symmetric cells demonstrated remarkable rate performance and long cycling stability,sustaining efficient operation for over 2000 cycles at 10 mA cm^(−2)with a low polarization voltage below 65 mV.This Zn anode modification strategy by in-situ constructed PAN-based nanofiber membrane has the advantages of simple-preparation,one-step membrane construction,binder-free,uniform distribution of functionalized units,which not only provides a specific scheme for developing advanced Zn anode but also lays a certain research foundation for developing“separator-anode”integrated Zn-based batteries.展开更多
Ca3MgNi14,Nd1.5Ca1.5MgNi14,Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 alloys were prepared by high frequency induction melting and sintering.Characterization and analysis were performed by X-ray diffraction/Rietveld full-s...Ca3MgNi14,Nd1.5Ca1.5MgNi14,Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 alloys were prepared by high frequency induction melting and sintering.Characterization and analysis were performed by X-ray diffraction/Rietveld full-spectrum fitting,gaseous P-C-T hydrogen storage test and electrochemical properties tests.It can be found that all alloys consist of Gd2Co7-type 3R phase and Ce2Ni7-type 2H phase.Although the hydrogen storage capacities of Nd1.5Ca1.5MgNi14,Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 decrease to some extent compared to that of Ca3MgNi14,their equilibrium pressures for absorption and desorption increase markedly.Moreover,R1.5Ca1.5MgNi14 alloys have better cycling stabilities and high-rate discharge(HRD)properties as compared to Ca3MgNi14.The hydrogen diffusion in alloy electrodes is the main factor to influence the HRD performance.展开更多
In this study,TiNCl was designed and applied in high-rate lithium-ion batteries(LIBs),and the mechanism of the energy storage in TiNCl was uncovered.The Ti-N layer serves as the electronic conductive unit for its high...In this study,TiNCl was designed and applied in high-rate lithium-ion batteries(LIBs),and the mechanism of the energy storage in TiNCl was uncovered.The Ti-N layer serves as the electronic conductive unit for its high conductivity,while the polyhedral channels constructed with Cl facilitate the transmission of Li ions serving as the ionic conductive units.In addition,due to the negatively charged nature of Cl,the TiNCl anode has a capacitive contribution up to 99.5%at 1 mV s.Even at a high rate of 50 C,it still retains a remarkable reversible capacity of 202 mA h gafter 1000 cycles.The concept based on the structure design develops new electrode materials with desired properties.展开更多
Because of its high theoretical capacity,MnSe has been identified as a promising candidate as the anode material for sodiumion batteries.However,its fast capacity deterioration due to the huge volume change during the...Because of its high theoretical capacity,MnSe has been identified as a promising candidate as the anode material for sodiumion batteries.However,its fast capacity deterioration due to the huge volume change during the intercalation/deintercalation of sodium ions severely hinders its practical application.Moreover,the sodium storage mechanism of MnSe is still under discussion and requires in-depth investigations.Herein,the unique thorn ball-likeα-MnSe/C nanospheres have been prepared using manganese-containing metal organic framework(Mn-MOF)as a precursor followed by in situ gas-phase selenization at an elevated temperature.When serving as the anode material for sodium-ion battery,the as-preparedα-MnSe/C exhibits enhanced sodium storage capabilities of 416 and 405 mAh g^(-1)at 0.2 and 0.5 A g^(-1)after 100 cycles,respectively.It also shows a superior capacity retention of 275 mA h g^(-1)at 10 A g^(-1)after 2000 cycles,and a rate performance of 279 mA h g^(-1)at 20 A g^(-1).Such sodium storage properties could be attributed to the unique structure offering a highly efficient Na+diffusion kinetics with a diffusion coefficient between 1×10^(-11) and 3×10^(-10) cm^(2) s-1.The density functional theory calculation indicates that the fast Na+diffusion mainly takes place on the(100)plane of MnSe along a V-shaped path because of a relatively low diffusion energy barrier of 0.15 eV.展开更多
基金the financial support from the National Natural Science Foundation of China, China (22005207, 52261160384)the Guangdong Basic and Applied Basic Research Foundation, Guangdong Province, China (2019A1515011819)+2 种基金the Outstanding Youth Basic Research Project of Shenzhen, Shenzhen, China (RCYX20221008092934093)the Joint Funds of the National Natural Science Foundation of China, China (U22A20140)the Science and Technology Development Fund, Macao SAR (0090/2021/A2 and 0049/2021/AGJ)
文摘Magnesium ion batteries(MIBs)are a potential field for the energy storage of the future but are restricted by insufficient rate capability and rapid capacity degradation.Magnesium-sodium hybrid ion batteries(MSHBs)are an effective way to address these problems.Here,we report a new type of MSHBs that use layered sodium vanadate((Na,Mn)V_(8)O_(20)·5H_(2)O,Mn-NVO)cathodes coupled with an organic 3,4,9,10-perylenetetracarboxylic diimide(PTCDI)anode in Mg^(2+)/Na^(+)hybrid electrolytes.During electrochemical cycling,Mg^(2+)and Na^(+)co-participate in the cathode reactions,and the introduction of Na^(+)promotes the structural stability of the Mn-NVO cathode,as cleared by several ex-situ characterizations.Consequently,the Mn-NVO cathode presents great specific capacity(249.9 mA h g^(−1)at 300 mA g^(−1))and cycling(1500 cycles at 1500 mA g^(−1))in the Mg^(2+)/Na^(+)hybrid electrolytes.Besides,full battery displays long lifespan with 10,000 cycles at 1000 mA g^(−1).The rate performance and cycling stability of MSHBs have been improved by an economical and scalable method,and the mechanism for these improvements is discussed.
文摘Based on the investigation of long-life asphalt pavement at home and abroad,the development of long-life asphalt pavement technology in Shandong Province,China is reviewed in this paper.The structural combination char-acteristics of typical long-life asphalt pavement in Shandong Province and their popularization and application are introduced.The application effect of combined base long-life asphalt pavement,which has been widely promoted,is evaluated.At the same time,taking the Binda perpetual pavement test road in Shandong Province as an example,the dynamic response and long-term performance evolution of long-life asphalt pavement are analyzed over a period of more than 17 years.Sections S1,S2,and S3 present information about full-depth asphalt pavement.Section S4 describes combined base asphalt pavement.The results show that the maximum strain of S1–S4 is within the endurance strain limit.S1,S2,S3 and S4 are all expected to be long-life asphalt pavements.In the current study,Sections S1–S4 were maintained in good condition during a service period of more than 17 years with no structural cracks and good deflection,rutting,and IRI indexes.The deflection index was stable without growth,and the IRI was also relatively stable following the opening to traffic.The rutting depth un-derwent a slight cumulative increase within 8 years of opening,and then stabilized.The average rutting depth over the 17-year period was less than 15 mm.Therefore,S1–S4 meet the design standards required for use as long-life pavements.From the perspectives of resource saving,energy saving,and emission reduction and service performance,full-depth asphalt pavement can be considered to represent a new generation of green and durable pavement structures with great future promotion potential.
基金Funded by the National Natural Science Foundation of China(51208396 and 21277017)the Fundamental Research Funds for the Central Universities(2013-Ia-36 and 2013-Ia-39)the Selfdetermined and Innovative Research Funds of WUT(136814016)
文摘To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic and lithium ion transport rates and thus an improved high-rate performance. However, our previous synthesized LiFePO4 nanorods only exhibited low high-rate and slightly unstable cycle performance. Possible reasons are the poor crystallization and Fe2+ oxidation of LiFePO4 nanorods prepared by hydrothermal method. In this paper, LiFePO4 nanorods were simply dealt with at 700 ℃ for 4 h under the protection of Ar and H2 mixture gas. The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry(CV). The experimental results indicated that the annealed LiFePO4 nanorods delivered an excellent cycling stability and obviously improved capacity of 150 mA·h·g-1 at 1C, and even 122 mA·h·g-1 at 5C.
基金supported by the National Natural Science Foundation of China(22179089)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_3245)support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Suzhou,China。
文摘An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric dispersion and sole electronic configuration limit the catalytic benefits and curtail the cell performance.Here,we propose a class of dual-atom catalytic moieties comprising hetero-or homo-atomic pairs anchored on N-doped graphene(NG)to unlock the liquid–solid redox puzzle of sulfur,readily realizing Li-S full cell under high-rate-charging conditions.As for Fe-Ni-NG,in-depth experimental and theoretical analysis reveal that the hetero-atomic orbital coupling leads to altered energy levels,unique electronic structures,and varied Fe oxidation states in comparison with homo-atomic structures(FeFe-NG or Ni-Ni-NG).This would weaken the bonding energy of polysulfide intermediates and thus enable facile electrochemical kinetics to gain rapid liquid-solid Li_(2)S_(4)?Li_(2)S conversion.Encouragingly,a Li-S battery based on the S@Fe-Ni-NG cathode demonstrates unprecedented fast-charging capability,documenting impressive rate performance(542.7 mA h g^(-1)at 10.0 C)and favorable cyclic stability(a capacity decay of 0.016%per cycle over 3000 cycles at 10.0 C).This finding offers insights to the rational design and application of dual-atom mediators for Li-S batteries.
文摘To move the performance of lithium-ion batteries into the next stage,the modification of the structure of cells is the only choice except for the development of materials exhibiting higher performance.In this review paper,the employment of through-holing structures of anodes and cathodes prepared with a picosecond pulsed laser has been proposed.The laser system and the structure for improving the battery performance were introduced.The performance of laminated cells constructed with through-holed anodes and cathodes was reviewed from the viewpoints of the improvement of high-rate performance and energy density,removal of unbalanced capacities on both sides of the current collector,even greater high-rate performance by hybridizing cathode materials and removal of irreversible capacity.In conclusion,the points that should be examined and the problem for the through-holed structure to be in practical use are summarized.
基金National Natural Science Foundation of China,Grant/Award Numbers:51972121,51972270,51702262Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program,Grant/Award Number:2017TQ04C419Key Research and Development Program of Shaanxi Province,Grant/Award Number:2019TSLGY07-03。
文摘The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally.
基金financially supported by the“Advanced Research Center for Green Materials Science and Technology”from The Featured Area Research Center Program within the framework of the Higher Education Sprout Project by Ministry of Science and Technology in Taiwan under the grants of MOST-108-3017-F-002002,and also of MOST-107-2221-E-002-106-MY3,MOST-108-2119-M-002-010,MOST-107-2923-E-011-002,MOST-108-3116-F-301-001-F
文摘Pseudocapacitive transition metal oxides(PTMOs)have the advantages of high areal capacitance and material density suitable for high-energy supercapacitor devices,but they are typically marred by insufficient rate performance,which in turn deteriorates cyclic stability at high current levels.Using the example of spinel manganese oxide,herein we demonstrate that a pseudocapacitive oxide electrode of remarkable rate performance and cyclic stability may be realized by adopting oxide nanocrystallites,which are derived based on a novel solution chemistry,and carbon additive(CA)nanoparticles with highly uniform of size distributions.Precisely controlling the particle morphology and size distribution of the active material and conductive additive(CA)in the nanometer range can maximize the density of active material-CA-electrolyte three-phase contact points,thus facilitating synchronized electron and cation flow for the completion of surface faradaic reactions.The resultant Mn3O4 pseudocapacitive electrode exhibits rate capability and cycle stability,including 60%capacity retention at 60 A g-1 and no capacity fade over 100000 cycles under dynamic current densities,far superior to the state-of-the-art PTMO electrodes.The electrode design strategy is in general applicable to pseudocapacitors containing poorly conductive active materials.
基金the financial support from the Ministry of Science and Technology of China(MoST,No.52090034)the Higher Education Discipline Innovation Project(No.B12015).
文摘Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries(LIBs)due to their high specific capacity,high voltage,low cost.However,their commercialization is hindered by limited cycle life and poor rate performance.Herein,an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate(LiPP)and spinel phase covered on top of the bulk layered phase,is developed for Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)(LMNO)using Li^(+)-conductor LiPP(denoted as LMNO@S-LiPP).With such a double-layer covered architecture,the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g^(−1)at 1 A·g^(−1)and retains 85.3%of the initial capacity after 300 cycles,so far,the best highrate electrochemical performance of all the previously reported LMNOs.The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg^(−1)(based on total weight of active materials in cathode and anode).Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture,which accelerates Li-ion diffusion,restrains oxygen release,inhibits interfacial side reactions,suppresses structural degradation during cycling.Moreover,this strategy is applicable for other high-energy-density cathodes,such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2),LiCoO_(2).Hence,this work presents a simple,cost-effective,scalable strategy for the development of high-performance cathode materials.
基金National Natural Science Foundation of China(52202327)Science and Technology Commission of Shanghai Municipality(22ZR1471300)+2 种基金National Science Foundation of China(Grant 51972326)Youth Innovation Promotion Association CAS,Foundation Strengthening ProjectProgram of Shanghai Academic Research Leader(Grant 22XD1424300).
文摘Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.
基金supported by the University Natural Science Research Project of Anhui Province in China(No.2023AH051104)the Director’s Fund of Key Laboratory of Green Fabrication and Surface Technology of Advance Metal Materials,Ministry of Education(No.GFST2022ZR08).
文摘The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroatom La^(3+)doping strategy.As demonstrated,La^(3+)with a large radius can be doped successfully into the spinel lattice of(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4),thereby not only causing lattice distortion to increase oxygen vacancies but also refining crystalline grains and improving the specific area.Compared with the(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)anode,the(La_(0.01)CoCrFeMnNi)_(3/5.01)O_(4) anode with moderate doping exhibits excellent cycling performance(1228 mAh·g^(−1)after 400 cycles at 0.2 A·g^(−1))and yields an increase of 75%rate capability at 3 A·g^(−1)(420 mAh·g^(−1)at 3 A·g^(−1)).The desirable kinetic transport of electrons and diffusion of Li+within the moderately La^(3+)-doped anode and the synergistic interfacial pseudocapacitive behavior satisfy the redox reaction at a high rate,thus increasing rate capability.
基金supported by the National Basic Research Program of China(2013CB934103 and 2012CB933003)the International Science&Technology Cooperation Program of China(2013DFA50840)+4 种基金the National Natural Science Foundation of China(51521001 and 51272197)the National Natural Science Fund for Distinguished Young Scholars(51425204)Hubei Province Natural Science Fund for Distinguished Young Scholars(2014CFA035)the Fundamental Research Funds for the Central Universities(WUT:2015-III-0322015-III-021)
文摘Lithium nickel manganese oxide spinel(Li Ni0.5-Mn1.5O4, LNMO) has attracted much attention as the cathode material for rechargeable lithium-ion batteries due to its high energy density and low cost. However, the short cycle life and poor high-rate capability hinder its commercialization. In this study, we synthesized hollow spherical LNMO built from polyhedral particles. The LNMO hollow structure guarantees sufficient contact with electrolyte and rapid diffusion of lithium ions. To enhance the conductivity, we use carbon nanotubes(CNTs) to modify the surface of the cathode. After CNT modification, the LNMO hollow structure manifests outstanding cycling stability and high-rate capability. It delivers a discharge capacity of 127 m A h g-1 at 5 C, maintaining 104 m A h g-1 after 500 cycles. Even at a high rate of 20 C, a capacity of 121 m A h g-1 can be obtained. The excellent electrochemical performance is ascribed to the unique structure and the enhanced conductivity through CNT modification. It is demonstrated that the CNTmodified hollow spherical LNMO is a promising cathode for lithium ion batteries.
基金supported by the Natural Science Foundation of Anhui Province(Grant No.2008085ME125)University Natural Science Research Project of Anhui Province(Grant Nos.KJ2020A0268 and KJ2020A0270).
文摘High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated.
基金financially supported by the Youth Innovation Team of Colleges and Universities in Shandong Province(No.2022KJ223)the National Natural Science Foundation of China(Nos.22078179 and 52007110)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2022JQ10 and ZR2021MA026)Taishan S cholar Foundation(No.tsqn201812063)。
文摘Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of battery-type anodes hinder their practical application.Herein,phosphorus/nitrogen co-doped hollow carbon fibers(P-HCNFs)are prepared by a facile template method.The stable grape-like structure with continuous and interconnected cavity structure is an ideal scaffold for shortening the ion transport and relieving volume expansion,while the introduction of P atoms and intrinsic N atoms can create abundant extrinsic/intrinsic defects and additional active sites,reducing the K+diffusion barrier and improving the capacitive-controlled capacity.The P-HCNFs delivers a high specific capacity of 310 mAh·g^(-1)at 0.1 A·g^(-1)with remarkable ultra-high-rate performance(140 mAh·g^(-1)at 50 A·g^(-1))and retains an impressive capacity retention of 87%after 10,000 cycles at 10 A·g^(-1).As expected,the as-assembled PIHCs present a high energy density(115.8 Wh·kg^(-1)at 378.0 W·kg^(-1))and excellent capacity retention of 91%after 20,000 cycles.This work not only shows great potential for utilizing heteroatom-doping and structural design strategies to boost potassium storage,but also paves the way for advancing the practicality of high-energy PIHCs devices.
基金supported by‘Advanced Research Infrastructure for Materials and Nanotechnology in Japan(ARIM)’of the Ministry of Education,Culture,Sports,Science and Technology(MEXT).Proposal Number 22KU0036。
文摘Aiming to improve the battery performance of lithium-ion batteries(LIBs),modification of the cathodes and anodes of LIBs using laser beams to prepare through-holes,non-through-holes or ditches arranged in grid and line patterns has been proposed by many researchers and engineers.In this study,a laser processing system attached to rollers,which realizes this modification without large changes in the present mass-production system,was developed.The laser system apparatus comprises roll-to-roll equipment and laser equipment.The roll-to-roll equipment mainly consists of a hollow cylinder with openings on its circumferential surface.Cathode and anode electrodes for LIBs are wound around the cylinder in the longitudinal direction of the electrodes.A pulsed beam reflected from the central axis of the cylinder can continuously open a large number of through-holes in the thin electrodes.Through-holes were formed at a rate of 100000 holes per second on lithium iron phosphate cathodes and graphite anodes with this system.The through-holed cathodes and anodes prepared with this system exhibited higher C-rate performance than nontreated cathodes and anodes.
基金This work was supported by the National Natural Science Foundation of China(U1564205)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under the Beijing Municipality(IDHT20180508).Naser Tavajohi acknowledges financial support from the Kempe Foundation.
文摘Owing to their high theoretical specific capacity and low cost, lithium- and manganese-rich layered oxide (LMR) cathode materials are receiving increasing attention for application in lithium-ion batteries. However, poor lithium ion and electron transport kinetics plus side effects of anion and cation redox reactions hamper power performance and stability of the LMRs. In this study, LMR Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2) was modified by phosphorus (P)-doping to increase Li+ conductivity in the bulk material. This was achieved by increasing the interlayer spacing of the lithium layer, electron transport and structural stability, resulting in improvement of the rate and safety performance. P^(5+) doping increased the distance between the (003) crystal planes from ~0.474 nm to 0.488 nm and enhanced the structural stability by forming strong covalent bonds with oxygen atoms, resulting in an improved rate performance (capacity retention from 38% to 50% at 0.05 C to 5 C) and thermal stability (50% heat release compared with pristine material). First-principles calculations showed the P-doping makes the transfer of excited electrons from the valence band to conduction band easier and P can form a strong covalent bond helping to stabilize material structure. Furthermore, the solid-state electrolyte modified P5+ doped LMR showed an improved cycle performance for up to 200 cycles with capacity retention of 90.5% and enhanced initial coulombic efficiency from 68.5% (pristine) or 81.7% (P-doped LMR) to 88.7%.
基金This study was jointly financed by the National Key Research and Development Program of China(nos.2018YFA0209100 and 2017YFA0206500)the NSFC(nos.21832003,21972061,21773111,51571110,and 21573107)the Fundamental Research Funds for the Central Universities(no.14380237).
文摘The lithium-oxygen(Li-O_(2))battery is highly promising but suffers from poor cycling life,especially at high rates;hence,the need for high-efficient accelerating agents is crucial.Recently macrocyclic Fe-based redox mediators,such as iron(II)phthalocyanine(FePc)and heme,have been developed and anticipated to be ideal due to their bifunctional charge and superoxide shuttling capabilities.However,they still operate far below expectations,which could result from the low concentrations in electrolyte due to the strongπ-πinteraction at carbon cathode.Herein,the authors report a new type of nonmacrocyclic Fe-based redox mediators,iron(II)acetylacetonate[Fe(acac)2]and iron(II)glycinate[Fe(gly)2],which have weakπ-πinteraction with the carbon cathode,thus,remain at high concentrations in the electrolyte.The Fe(gly)2@Li-O_(2)battery reaches a long life of 321 cycles at 0.5 A g^(−1),which is much superior to the counterpart with the typical macrocyclic FePc,and particularly exhibits a long life of 167 cycles at 2.0 A g^(−1)and 136 cycles at ultrahigh 5.0 A g^(−1).This study demonstrates an efficient strategy to achieve a high-rate performance of Li-O_(2)batteries by developing nonmacrocyclic Fe-based redox mediators with high-efficient electron and superoxide shuttling.
基金the Natural Science Foundation of China(No.21701202)Henan Province(No.212102210182&222102240038&232102231059&Young Backbone Teacher Funding of Henan province)Natural Science Foundation of Zhongyuan University of Technology(No.K2023MS007&K2023QN006).
文摘Uncontrollable Zn dendrites and side reactions seriously downgrade the cycling stability of the Zn anode,and restrict the commercialization of aqueous zinc ion batteries.Here,PAN-based(PAN,PAN/PMMA)nanofiber membranes with uniform“zincophilic-hydrophobic”sites have been in-situ electrospun on Zn to effectively prevent harmful side reactions and control Zn plating/stripping behavior.The abundant highly-negative functional groups(C≡N and C=O)of PAN/PMMA have strong coordination interactions with Zn2+,which can accelerate Zn2+desolvation and increase the Zn2+migration number.Furthermore,the even distribution of zincophilic sites can help create a uniform Zn deposition environment and enable horizontal Zn deposition.Simultaneously,the inherent“hydrophobicity”of the nonpolar carbon skeleton in PAN/PMMA can prevent Zn corrosion and hydrogen evolution reaction(HER)side reactions,thus improving the cycling stability of the Zn anode.As a result,PAN/PMMA@Zn symmetric cells demonstrated remarkable rate performance and long cycling stability,sustaining efficient operation for over 2000 cycles at 10 mA cm^(−2)with a low polarization voltage below 65 mV.This Zn anode modification strategy by in-situ constructed PAN-based nanofiber membrane has the advantages of simple-preparation,one-step membrane construction,binder-free,uniform distribution of functionalized units,which not only provides a specific scheme for developing advanced Zn anode but also lays a certain research foundation for developing“separator-anode”integrated Zn-based batteries.
基金Supported by the National Natural Science Foundation of China(Nos.51571001,51571063).
文摘Ca3MgNi14,Nd1.5Ca1.5MgNi14,Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 alloys were prepared by high frequency induction melting and sintering.Characterization and analysis were performed by X-ray diffraction/Rietveld full-spectrum fitting,gaseous P-C-T hydrogen storage test and electrochemical properties tests.It can be found that all alloys consist of Gd2Co7-type 3R phase and Ce2Ni7-type 2H phase.Although the hydrogen storage capacities of Nd1.5Ca1.5MgNi14,Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 decrease to some extent compared to that of Ca3MgNi14,their equilibrium pressures for absorption and desorption increase markedly.Moreover,R1.5Ca1.5MgNi14 alloys have better cycling stabilities and high-rate discharge(HRD)properties as compared to Ca3MgNi14.The hydrogen diffusion in alloy electrodes is the main factor to influence the HRD performance.
基金supported by the National Natural Science Foundation of China(21871008 and 51972326)the Key Research Program of Chinese Academy of Sciences(QYZDJ-SSW-JSC013)+1 种基金the Science and Technology Commission of Shanghai Municipality(22ZR1471300)the Youth Innovation Promotion Association CAS。
文摘In this study,TiNCl was designed and applied in high-rate lithium-ion batteries(LIBs),and the mechanism of the energy storage in TiNCl was uncovered.The Ti-N layer serves as the electronic conductive unit for its high conductivity,while the polyhedral channels constructed with Cl facilitate the transmission of Li ions serving as the ionic conductive units.In addition,due to the negatively charged nature of Cl,the TiNCl anode has a capacitive contribution up to 99.5%at 1 mV s.Even at a high rate of 50 C,it still retains a remarkable reversible capacity of 202 mA h gafter 1000 cycles.The concept based on the structure design develops new electrode materials with desired properties.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.ZYGX2019J030)。
文摘Because of its high theoretical capacity,MnSe has been identified as a promising candidate as the anode material for sodiumion batteries.However,its fast capacity deterioration due to the huge volume change during the intercalation/deintercalation of sodium ions severely hinders its practical application.Moreover,the sodium storage mechanism of MnSe is still under discussion and requires in-depth investigations.Herein,the unique thorn ball-likeα-MnSe/C nanospheres have been prepared using manganese-containing metal organic framework(Mn-MOF)as a precursor followed by in situ gas-phase selenization at an elevated temperature.When serving as the anode material for sodium-ion battery,the as-preparedα-MnSe/C exhibits enhanced sodium storage capabilities of 416 and 405 mAh g^(-1)at 0.2 and 0.5 A g^(-1)after 100 cycles,respectively.It also shows a superior capacity retention of 275 mA h g^(-1)at 10 A g^(-1)after 2000 cycles,and a rate performance of 279 mA h g^(-1)at 20 A g^(-1).Such sodium storage properties could be attributed to the unique structure offering a highly efficient Na+diffusion kinetics with a diffusion coefficient between 1×10^(-11) and 3×10^(-10) cm^(2) s-1.The density functional theory calculation indicates that the fast Na+diffusion mainly takes place on the(100)plane of MnSe along a V-shaped path because of a relatively low diffusion energy barrier of 0.15 eV.