The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Qu...The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Quantitative evaluation of water-flooded layers has become an important but difficult focus for secondary development of oilfields. In this paper, based on the analysis of current problems in quantitative evaluation of water-flooded layers, the Kexia Group conglomerate reservoir of the Sixth District in the Karamay Oilfield was studied. Eight types of conglomerate reservoir lithology were identified effectively by a data mining method combined with the data from sealed coring wells, and then a multi-parameter model for quantitative evaluation of the water-flooded layers of the main oil-bearing lithology was developed. Water production rate, oil saturation and oil productivity index were selected as the characteristic parameters for quantitative evaluation of water-flooded layers of conglomerate reservoirs. Finally, quantitative evaluation criteria and identification rules for water-flooded layers of main oil-bearing lithology formed by integration of the three characteristic parameters of water-flooded layer and undisturbed formation resistivity. This method has been used in evaluation of the water-flooded layers of a conglomerate reservoir in the Karamay Oilfield and achieved good results, improving the interpretation accuracy and compliance rate. It will provide technical support for avoiding perforation of high water-bearing layers and for adjustment of developmental programs.展开更多
Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to impro...Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.展开更多
Fines migration is defined as separation of a Nano-sized particle by fluid flow in porous media and its migration along some distances and its entrapment in a narrow pore throat or its settlement on pore wall. Althoug...Fines migration is defined as separation of a Nano-sized particle by fluid flow in porous media and its migration along some distances and its entrapment in a narrow pore throat or its settlement on pore wall. Although this phenomenon happens in scales of Nano-meters, it can lead to sever irretrievable damages. This damage includes permeability reduction that causes drastic oil recovery reduction. There are several forces impacting a fine that is placed on a pore wall. Some of most important forces affecting settlement of a fine in porous media in presence of a fluid are electrical forces. Electrical forces consist of several long and short range forces. This study focuses on a long range force called Double Layer Force (DLF) that beside Van der Waals is one of most powerful electrical forces. DLF is a repulsive force that can repel a particle from pore wall and result separation of a Nano-sized solid which subsequently moves along with flowing fluid and clogs a throat. The DLF depends on the solid material (reservoir rock and fine) and fluid properties (i.e. ionic strength, pH). This study investigates how each of these parameters affects DLF and introduces proper conditions for reservoir water flooding for controlling fines migration.展开更多
文摘The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Quantitative evaluation of water-flooded layers has become an important but difficult focus for secondary development of oilfields. In this paper, based on the analysis of current problems in quantitative evaluation of water-flooded layers, the Kexia Group conglomerate reservoir of the Sixth District in the Karamay Oilfield was studied. Eight types of conglomerate reservoir lithology were identified effectively by a data mining method combined with the data from sealed coring wells, and then a multi-parameter model for quantitative evaluation of the water-flooded layers of the main oil-bearing lithology was developed. Water production rate, oil saturation and oil productivity index were selected as the characteristic parameters for quantitative evaluation of water-flooded layers of conglomerate reservoirs. Finally, quantitative evaluation criteria and identification rules for water-flooded layers of main oil-bearing lithology formed by integration of the three characteristic parameters of water-flooded layer and undisturbed formation resistivity. This method has been used in evaluation of the water-flooded layers of a conglomerate reservoir in the Karamay Oilfield and achieved good results, improving the interpretation accuracy and compliance rate. It will provide technical support for avoiding perforation of high water-bearing layers and for adjustment of developmental programs.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)the China National Science and Technology Major Projects(Grant No:2016ZX05011)
文摘Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.
文摘Fines migration is defined as separation of a Nano-sized particle by fluid flow in porous media and its migration along some distances and its entrapment in a narrow pore throat or its settlement on pore wall. Although this phenomenon happens in scales of Nano-meters, it can lead to sever irretrievable damages. This damage includes permeability reduction that causes drastic oil recovery reduction. There are several forces impacting a fine that is placed on a pore wall. Some of most important forces affecting settlement of a fine in porous media in presence of a fluid are electrical forces. Electrical forces consist of several long and short range forces. This study focuses on a long range force called Double Layer Force (DLF) that beside Van der Waals is one of most powerful electrical forces. DLF is a repulsive force that can repel a particle from pore wall and result separation of a Nano-sized solid which subsequently moves along with flowing fluid and clogs a throat. The DLF depends on the solid material (reservoir rock and fine) and fluid properties (i.e. ionic strength, pH). This study investigates how each of these parameters affects DLF and introduces proper conditions for reservoir water flooding for controlling fines migration.