The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential...The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.展开更多
The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high...The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.展开更多
Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g...Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g.,rectangular.The inverse Lax-Wendroff(ILW)procedure can handle complex geometries for rectangular meshes.High-resolution and high-order methods can capture elaborated flow structures and phenomena.They also have strong mathematical and physical backgrounds,such as positivity-preserving,jump conditions,and wave propagation concepts.We perceive an effort toward direct numerical simulation,for instance,regarding weighted essentially non-oscillatory(WENO)schemes.Thus,we propose to solve a challenging engineering application without turbulence models.We aim to verify and validate recent high-resolution and high-order methods.To check the solver accuracy,we solved vortex and Couette flows.Then,we solved inviscid and viscous nozzle flows for a conical profile.We employed the finite difference method,positivity-preserving Lax-Friedrichs splitting,high-resolution viscous terms discretization,fifth-order multi-resolution WENO,ILW,and third-order strong stability preserving Runge-Kutta.We showed the solver is high-order and captured elaborated flow structures and phenomena.One can see oblique shocks in both nozzle flows.In the viscous flow,we also captured a free-shock separation,recirculation,entrainment region,Mach disk,and the diamond-shaped pattern of nozzle flows.展开更多
BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag...BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.展开更多
BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentat...BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.展开更多
BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a n...BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.展开更多
Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydo...Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.展开更多
For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th...For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.展开更多
Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulat...Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.展开更多
Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring me...Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.展开更多
The high phenotypic plasticity in the shell of oysters presents a challenge during taxonomic and phylogenetie studies of these economically important bivalves. However, because DNA can exhibit marked differences among...The high phenotypic plasticity in the shell of oysters presents a challenge during taxonomic and phylogenetie studies of these economically important bivalves. However, because DNA can exhibit marked differences among morphologically similar species, DNA barcoding offers a potential means for oyster identification. We analyzed the complete sequences of the cytochrome oxidase subunit I (COI) of five common Crassostrea species in China (including Hong Kong oyster C. hongkongensis, Jinjiang oyster C. ariakensis, Portuguese oyster C. angulata, Kumamoto oyster C. sikamea, and Pacific oyster C. gigas) and screened for distinct fragments. Using these distinct fragments on a high-resolution melting analysis platform, we developed an identification method that does not rely on species-specific PCR or fragment length polymorphism and is efficient, reliable, and easy to visualize. Using a single pair of primers (Oyster- COI-1), we were able to successfully distinguish among the five oyster species. This new method provides a simple and powerful tool for the identification of oyster species.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noi...A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure.展开更多
The detailed process and mechanism of colonic motility are still unclear, and colonic motility disorders are associated with numerous clinical diseases. Colonic manometry is considered to the most direct means of eval...The detailed process and mechanism of colonic motility are still unclear, and colonic motility disorders are associated with numerous clinical diseases. Colonic manometry is considered to the most direct means of evaluating colonic peristalsis. Colonic manometry has been studied for more than 30 years;however, the long duration of the examination, high risk of catheterization, huge amount of real-time data, strict catheter sterilization, and high cost of disposable equipment restrict its wide application in clinical practice. Recently, highresolution colonic manometry (HRCM) has rapidly developed into a major technique for obtaining more effective information involved in the physiology and/or pathophysiology of colonic contractile activity in colonic dysmotility patients. This review focuses on colonic motility, manometry, operation, and motor patterns, and the clinical application of HRCM. Furthermore, the limitations, future directions, and potential usefulness of HRCM in the evaluation of clinical treatment effects are also discussed.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercompute...This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercomputer Center in Tianjin, China, on its Tianhe-lA supercomputer platform. A series of three- model-day simulations were carried out with standard Aqua Planet Experiment (APE) designed within FAMIL to obtain the time stamp for the calculation of model speed, simulation cost, and model 1/O efficiency. The results of the simulation demonstrate that FAMIL has remarkable scalability below 3456 and 6144 cores, and the lowest simulation costs are 1536 and 3456 cores for 12.5 km and 6.25 krn resolutions, respectively. Furthermore, FAMIL has excellent I/O scalability and an efficiency of more than 80% on 6 I/Os and more than 99% on 1536 I/Os.展开更多
High-resolution ro-vibrational spectroscopy of ^15N2^16O in 1650-3450 cm-1 region is studied using highly enriched isotopologue sample. The positions of more than 7300 lines of ^15N2^16O isotopologue were measured wit...High-resolution ro-vibrational spectroscopy of ^15N2^16O in 1650-3450 cm-1 region is studied using highly enriched isotopologue sample. The positions of more than 7300 lines of ^15N2^16O isotopologue were measured with a typical accuracy of 5.0×10-4 cm-1. The transitions were rovibrationally assigned on the basis of the global effective Hamiltonian model. The band by band analysis allowed for the determination of the rovibrational parameters of a total of 73 bands. 29 of them are newly reported and more rotational transitions have been observed for the others. The maximum deviation of the preidictions of the effective Hamiltonian model is up to 0.70 cm-1 for the ^15N2^16O species.展开更多
When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positi...When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.展开更多
Predicting tropical cyclone(TC)genesis is of great societal importance but scientifically challenging.It requires fineresolution coupled models that properly represent air−sea interactions in the atmospheric responses...Predicting tropical cyclone(TC)genesis is of great societal importance but scientifically challenging.It requires fineresolution coupled models that properly represent air−sea interactions in the atmospheric responses to local warm sea surface temperatures and feedbacks,with aid from coherent coupled initialization.This study uses three sets of highresolution regional coupled models(RCMs)covering the Asia−Pacific(AP)region initialized with local observations and dynamically downscaled coupled data assimilation to evaluate the predictability of TC genesis in the West Pacific.The APRCMs consist of three sets of high-resolution configurations of the Weather Research and Forecasting−Regional Ocean Model System(WRF-ROMS):27-km WRF with 9-km ROMS,and 9-km WRF with 3-km ROMS.In this study,a 9-km WRF with 9-km ROMS coupled model system is also used in a case test for the predictability of TC genesis.Since the local sea surface temperatures and wind shear conditions that favor TC formation are better resolved,the enhanced-resolution coupled model tends to improve the predictability of TC genesis,which could be further improved by improving planetary boundary layer physics,thus resolving better air−sea and air−land interactions.展开更多
A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolu...A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.展开更多
基金supported by the National Natural Science Foundation of China(52327806 and U22A6006).
文摘The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.
基金supported by the special funds of Laoshan Laboratory(No.LSKJ202203604)the National Key Research and Development Program of China(No.2016 YFC0303901).
文摘The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.
基金supported by the AFOSR grant FA9550-20-1-0055 and the NSF grant DMS-2010107.
文摘Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g.,rectangular.The inverse Lax-Wendroff(ILW)procedure can handle complex geometries for rectangular meshes.High-resolution and high-order methods can capture elaborated flow structures and phenomena.They also have strong mathematical and physical backgrounds,such as positivity-preserving,jump conditions,and wave propagation concepts.We perceive an effort toward direct numerical simulation,for instance,regarding weighted essentially non-oscillatory(WENO)schemes.Thus,we propose to solve a challenging engineering application without turbulence models.We aim to verify and validate recent high-resolution and high-order methods.To check the solver accuracy,we solved vortex and Couette flows.Then,we solved inviscid and viscous nozzle flows for a conical profile.We employed the finite difference method,positivity-preserving Lax-Friedrichs splitting,high-resolution viscous terms discretization,fifth-order multi-resolution WENO,ILW,and third-order strong stability preserving Runge-Kutta.We showed the solver is high-order and captured elaborated flow structures and phenomena.One can see oblique shocks in both nozzle flows.In the viscous flow,we also captured a free-shock separation,recirculation,entrainment region,Mach disk,and the diamond-shaped pattern of nozzle flows.
基金Supported by National Natural Science Foundation of China,No.82071871Guangdong Basic and Applied Basic Research Foundation,No.2021A1515220131+1 种基金Guangdong Medical Science and Technology Research Fund Project,No.2022111520491834Clinical Research Project of Shenzhen Second People's Hospital,No.20223357022。
文摘BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.
基金Supported by The Clinical Innovation Guidance Program of Hunan Provincial Science and Technology Department,China,No.2021SK51714The Hunan Nature Science Foundation,China,No.2023JJ30531.
文摘BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.
基金This study was approved by the Medical Ethics Committee of Beijing Tsinghua Changgung Hospital(20002-0-02).
文摘BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.
文摘Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.
基金Supported by the Academician Foundation of the 14th Research Institute of China Electronics Technology Group Corporation(2008041001)~~
文摘For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.
基金supported by the National Key Technologies R&D Program(Grant No. 2007BAC29B03)China-UK-Swiss Adaptingto Climate Change in China Project (ACCC)-Climate Sciencethe National Natural Science Foundation of China (Grant No. 40890054)
文摘Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.
文摘Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB126402)the National Natural Science Foundation of China(Nos.40730845,41206149)+4 种基金the Shandong Provincial Natural Science Foundation(No.ZR2010DQ024)the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A405)the Earmarked Fund for Modern Agro-Industry Technology Research System(No.CARS-48)the Taishan Scholar Program of Shandong Provincethe Taishan Scholar Climbing Program of Shandong Province
文摘The high phenotypic plasticity in the shell of oysters presents a challenge during taxonomic and phylogenetie studies of these economically important bivalves. However, because DNA can exhibit marked differences among morphologically similar species, DNA barcoding offers a potential means for oyster identification. We analyzed the complete sequences of the cytochrome oxidase subunit I (COI) of five common Crassostrea species in China (including Hong Kong oyster C. hongkongensis, Jinjiang oyster C. ariakensis, Portuguese oyster C. angulata, Kumamoto oyster C. sikamea, and Pacific oyster C. gigas) and screened for distinct fragments. Using these distinct fragments on a high-resolution melting analysis platform, we developed an identification method that does not rely on species-specific PCR or fragment length polymorphism and is efficient, reliable, and easy to visualize. Using a single pair of primers (Oyster- COI-1), we were able to successfully distinguish among the five oyster species. This new method provides a simple and powerful tool for the identification of oyster species.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金supported by the China Geological Survey Project“Deep Geological Survey of the Qin-Hang Belt”(No.DD20160082)the National Natural Science Foundation of China(No.41574048)
文摘A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure.
文摘The detailed process and mechanism of colonic motility are still unclear, and colonic motility disorders are associated with numerous clinical diseases. Colonic manometry is considered to the most direct means of evaluating colonic peristalsis. Colonic manometry has been studied for more than 30 years;however, the long duration of the examination, high risk of catheterization, huge amount of real-time data, strict catheter sterilization, and high cost of disposable equipment restrict its wide application in clinical practice. Recently, highresolution colonic manometry (HRCM) has rapidly developed into a major technique for obtaining more effective information involved in the physiology and/or pathophysiology of colonic contractile activity in colonic dysmotility patients. This review focuses on colonic motility, manometry, operation, and motor patterns, and the clinical application of HRCM. Furthermore, the limitations, future directions, and potential usefulness of HRCM in the evaluation of clinical treatment effects are also discussed.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110303)the National Basic Research Program of China (973Program, Grant Nos. 2012CB417203 and 2010CB950404)+1 种基金the National High Technology Research and Development Program of China (863 Program, Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant No. 41023002)
文摘This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercomputer Center in Tianjin, China, on its Tianhe-lA supercomputer platform. A series of three- model-day simulations were carried out with standard Aqua Planet Experiment (APE) designed within FAMIL to obtain the time stamp for the calculation of model speed, simulation cost, and model 1/O efficiency. The results of the simulation demonstrate that FAMIL has remarkable scalability below 3456 and 6144 cores, and the lowest simulation costs are 1536 and 3456 cores for 12.5 km and 6.25 krn resolutions, respectively. Furthermore, FAMIL has excellent I/O scalability and an efficiency of more than 80% on 6 I/Os and more than 99% on 1536 I/Os.
基金This work is supported by the National Natural Science Foundation of China (No.20903085), the NKBRSF 2010CB9230, and RFBR-Russia (No.06-05- 39016). The support of the Groupement de Recherche International SAMIA (Spectroscopie d'Absorption des Mol@cules d'Interet Atmospherique) between CNRS (France), RFBR (Russia) and CAS (China) is also acknowledged.
文摘High-resolution ro-vibrational spectroscopy of ^15N2^16O in 1650-3450 cm-1 region is studied using highly enriched isotopologue sample. The positions of more than 7300 lines of ^15N2^16O isotopologue were measured with a typical accuracy of 5.0×10-4 cm-1. The transitions were rovibrationally assigned on the basis of the global effective Hamiltonian model. The band by band analysis allowed for the determination of the rovibrational parameters of a total of 73 bands. 29 of them are newly reported and more rotational transitions have been observed for the others. The maximum deviation of the preidictions of the effective Hamiltonian model is up to 0.70 cm-1 for the ^15N2^16O species.
基金supported by the National Scientific Foundation of China (Grant no. 41506085)the Open Foundation of the Key Laboratory of Gas Hydrate, Ministry of Land and Resources, China (Grant no. SHW [2014]-DX-12)the China Geological Survey Project (Grant no. DD20160213)
文摘When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.
基金supported by the National Key Research&Development Program of China(Grant Nos.2017YFC1404100 and 2017YFC1404104)the National Natural Science Foundation of China(Grant Nos.41775100 and 41830964)。
文摘Predicting tropical cyclone(TC)genesis is of great societal importance but scientifically challenging.It requires fineresolution coupled models that properly represent air−sea interactions in the atmospheric responses to local warm sea surface temperatures and feedbacks,with aid from coherent coupled initialization.This study uses three sets of highresolution regional coupled models(RCMs)covering the Asia−Pacific(AP)region initialized with local observations and dynamically downscaled coupled data assimilation to evaluate the predictability of TC genesis in the West Pacific.The APRCMs consist of three sets of high-resolution configurations of the Weather Research and Forecasting−Regional Ocean Model System(WRF-ROMS):27-km WRF with 9-km ROMS,and 9-km WRF with 3-km ROMS.In this study,a 9-km WRF with 9-km ROMS coupled model system is also used in a case test for the predictability of TC genesis.Since the local sea surface temperatures and wind shear conditions that favor TC formation are better resolved,the enhanced-resolution coupled model tends to improve the predictability of TC genesis,which could be further improved by improving planetary boundary layer physics,thus resolving better air−sea and air−land interactions.
基金This study is supported by the Key Program of Chinese Academy of Sciences KZCX3 SW-221the National Natural Science Foundation of China(Grant No.40233033 and 40221503).
文摘A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.