As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation m...As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative re...BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative rehabilitation.However,the effect of surgery on patients'left coronary artery and its vascular reconstruction have not been deeply discussed.With the development of medical imaging technology,3D vascular reconstruction has become an effective means to evaluate the curative effect of surgery.AIM To investigate the clinical value of preoperative 3D vascular reconstruction in LLAR of rectal cancer with the left colic artery(LCA)preserved.METHODS A retrospective cohort study was performed to analyze the clinical data of 146 patients who underwent LLAR for rectal cancer with LCA preservation from January to December 2023 in our hospital.All patients underwent LLAR of rectal cancer with the LCA preserved,and the intraoperative and postoperative data were complete.The patients were divided into a reconstruction group(72 patients)and a nonreconstruction group(74 patients)according to whether 3D vascular reconstruction was performed before surgery.The clinical features,operation conditions,complications,pathological results and postoperative recovery of the two groups were collected and compared.RESULTS A total of 146 patients with rectal cancer were included in the study,including 72 patients in the reconstruction group and 74 patients in the nonreconstruction group.There were 47 males and 25 females in the reconstruction group,aged(59.75±6.2)years,with a body mass index(BMI)(24.1±2.2)kg/m^(2),and 51 males and 23 females in the nonreconstruction group,aged(58.77±6.1)years,with a BMI(23.6±2.7)kg/m^(2).There was no significant difference in the baseline data between the two groups(P>0.05).In the submesenteric artery reconstruction group,35 patients were type Ⅰ,25 patients were type Ⅱ,11 patients were type Ⅲ,and 1 patient was type Ⅳ.There were 37 type Ⅰ patients,24 type Ⅱ patients,12 type Ⅲ patients,and 1 type Ⅳ patient in the nonreconstruction group.There was no significant difference in arterial typing between the two groups(P>0.05).The operation time of the reconstruction group was 162.2±10.8 min,and that of the nonreconstruction group was 197.9±19.1 min.Compared with that of the reconstruction group,the operation time of the two groups was shorter,and the difference was statistically significant(t=13.840,P<0.05).The amount of intraoperative blood loss was 30.4±20.0 mL in the reconstruction group and 61.2±26.4 mL in the nonreconstruction group.The amount of blood loss in the reconstruction group was less than that in the control group,and the difference was statistically significant(t=-7.930,P<0.05).The rates of anastomotic leakage(1.4%vs 1.4%,P=0.984),anastomotic hemorrhage(2.8%vs 4.1%,P=0.672),and postoperative hospital stay(6.8±0.7 d vs 7.0±0.7 d,P=0.141)were not significantly different between the two groups.CONCLUSION Preoperative 3D vascular reconstruction technology can shorten the operation time and reduce the amount of intraoperative blood loss.Preoperative 3D vascular reconstruction is recommended to provide an intraoperative reference for laparoscopic low anterior resection with LCA preservation.展开更多
Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide ran...Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide range of applications in fields such as virtual reality,augmented reality,indoor navigation,and game development.Existing methods based on multi-view RGB images have made significant progress in 3D reconstruction.These image-based reconstruction methods not only possess good expressive power and generalization performance,but also handle complex geometric shapes and textures effectively.Despite facing challenges such as lighting variations,occlusion,and texture loss in indoor scenes,these challenges can be effectively addressed through deep neural networks,neural implicit surface representations,and other techniques.The technology of indoor 3D reconstruction based on multi-view RGB images has a promising future.It not only provides immersive and interactive virtual experiences but also brings convenience and innovation to indoor navigation,interior design,and virtual tours.As the technology evolves,these image-based reconstruction methods will be further improved to provide higher quality and more accurate solutions to indoor scene reconstruction.展开更多
The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement pattern...The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement patterns,crucial for understanding feeding behaviors,have been thoroughly studied in this group,studies on non-tyrannosaurid tyrannosauroids are relatively scarce.This study utilizes high-resolution CT data to investigate the tooth replacement pattern in two specimens of Guanlong wucaii,a Late Jurassic tyrannosauroid,and provides insights into the evolution of tooth replacement across Tyrannosauroidea.Second-generation replacement teeth,a rarity observed mainly in giant predatory theropods(e.g.some tyrannosaurids),were detected in the dentary dentition of the juvenile Guanlong.Zahnreihen reconstructions display a consistent cephalad alternating tooth replacement pattern in the maxilla and the dentary of both of the examined individuals,with Z-spacing values exceeding 2.0.As Guanlong grows,the Z-spacing value in the maxillary dentition increases,resembling the ontogenetic changes documented in the Tyrannosauridae.Additionally,like Tarbosaurus,Guanlong also displays a discontinuity between the tooth replacement waves at the premaxilla-maxilla boundary.This study thus demonstrates that some tyrannosaurid-like tooth replacement patterns were acquired before the origin of the Tyrannosauridae.展开更多
In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurat...In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds wi...The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.展开更多
Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing techn...Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.展开更多
The clinical efficacy was compared between 3D navigation-assisted percutaneous iliosacral screw(3DPS)and minimally invasive reconstruction plate(MIRP)in treating sacroiliac complex injury and the surgical procedures o...The clinical efficacy was compared between 3D navigation-assisted percutaneous iliosacral screw(3DPS)and minimally invasive reconstruction plate(MIRP)in treating sacroiliac complex injury and the surgical procedures of 3DPS were introduced.A retrospective analysis was performed on 49 patients with sacroiliac complex injury from March 2013 to May 2017.Twenty-one cases were treated by 3DPS,and 28 cases by MIRP.Intraoperative indexes as operative time,blood loss,incision length,length of hospital stay and postoperative complications were respectively documented.Quality of reduction was postoperatively evaluated by Matta radiological criteria,and clinical effect was assessed by Majeed scoring criteria at the last followup.Operative time and hospital stay were significantly shortened,and blood loss,and incision length were significantly reduced in 3DPS group as compared with those in MIRP group(P<0.05).No statistically significant difference was found between 3DPS group and MIRP group in the assessment of reduction and function(P>0.05).It was concluded that both 3DPS and MIRP can effectively treat the sacroiliac complex injury,and 3DPS can provide an accurate,safe and minimally invasive fixation with shorter operative time and hospital stay.展开更多
Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elasti...Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh.Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field.Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and1.2 mm, separately. The average reconstruction time is 3 minutes.展开更多
3D reconstruction of worn parts is the foundation for remanufacturing system based on robotic arc welding, because it can provide 3D geometric information for robot task plan. In this investigation, a novel 3D reconst...3D reconstruction of worn parts is the foundation for remanufacturing system based on robotic arc welding, because it can provide 3D geometric information for robot task plan. In this investigation, a novel 3D reconstruction system based on linear structured light vision sensing is developed. This system hardware consists of a MTC368-CB CCD camera, a MLH-645 laser projector and a DH-CG300 image grabbing card. This system software is developed to control the image data capture. In order to reconstruct the 3D geometric information from the captured image, a two steps rapid calibration algorithm is proposed. The 3D reconstruction experiment shows a satisfactory result.展开更多
The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the a...The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the acquisition of images in real-time,motion blur,caused by camera shaking or human motion,appears.Deep learning-based intelligent control applied in vision can help us solve the problem.To this end,we propose a 3D reconstruction method for motion-blurred images using deep learning.First,we develop a BF-WGAN algorithm that combines the bilateral filtering(BF)denoising theory with a Wasserstein generative adversarial network(WGAN)to remove motion blur.The bilateral filter denoising algorithm is used to remove the noise and to retain the details of the blurred image.Then,the blurred image and the corresponding sharp image are input into the WGAN.This algorithm distinguishes the motion-blurred image from the corresponding sharp image according to the WGAN loss and perceptual loss functions.Next,we use the deblurred images generated by the BFWGAN algorithm for 3D reconstruction.We propose a threshold optimization random sample consensus(TO-RANSAC)algorithm that can remove the wrong relationship between two views in the 3D reconstructed model relatively accurately.Compared with the traditional RANSAC algorithm,the TO-RANSAC algorithm can adjust the threshold adaptively,which improves the accuracy of the 3D reconstruction results.The experimental results show that our BF-WGAN algorithm has a better deblurring effect and higher efficiency than do other representative algorithms.In addition,the TO-RANSAC algorithm yields a calculation accuracy considerably higher than that of the traditional RANSAC algorithm.展开更多
Craniomaxillofacial reconstruction implants,which are extensively used in head and neck surgery,are conventionally made in standardized forms.During surgery,the implant must be bended manually to match the anatomy of ...Craniomaxillofacial reconstruction implants,which are extensively used in head and neck surgery,are conventionally made in standardized forms.During surgery,the implant must be bended manually to match the anatomy of the individual bones.The bending process is time-consuming,especially for inexperienced surgeons.Moreover,repetitive bending may induce undesirable internal stress concentration,resulting in fatigue under masticatory loading in v iv o and causing various complications such as implant fracture,screw loosening,and bone resorption.There have been reports on the use of patient-specific 3D-printed implants for craniomaxillofacial reconstruction,although few reports have considered implant quality.In this paper,we present a systematic approach for making 3D-printed patientspecific surgical implants for craniomaxillofacial reconstruction.The approach consists of three parts:First,an easy-to-use design module is developed using Solidworks®software,which helps surgeons to design the implants and the axillary fixtures for surgery.Design engineers can then carry out the detailed design and use finite-element modeling(FEM)to optimize the design.Second,the fabrication process is carried out in three steps:0 testing the quality of the powder;(2)setting up the appropriate process parameters and running the 3D printing process;and (3)conducting post-processing treatments(i.e.,heat and surface treatments)to ensure the quality and performance of the implant.Third,the operation begins after the final checking of the implant and sterilization.After the surgery,postoperative rehabilitation follow-up can be carried out using our patient tracking software.Following this systematic approach,we have successfully conducted a total of 41 surgical cases.3D-printed patient-specific implants have a number of advantages;in particular,their use reduces surgery time and shortens patient recovery time.Moreover,the presented approach helps to ensure implant quality.展开更多
The development of digital intelligent diagnostic and treatment technology has opened countless new opportunities for liver surgery from the era of digital anatomy to a new era of digital diagnostics,virtual surgery s...The development of digital intelligent diagnostic and treatment technology has opened countless new opportunities for liver surgery from the era of digital anatomy to a new era of digital diagnostics,virtual surgery simulation and using the created scenarios in real-time surgery using mixed reality.In this article,we described our experience on developing a dedicated 3 dimensional visualization and reconstruction software for surgeons to be used in advanced liver surgery and living donor liver transplantation.Furthermore,we shared the recent developments in the field by explaining the outreach of the software from virtual reality to augmented reality and mixed reality.展开更多
BACKGROUND Hernia is a common condition requiring abdominal surgery.The current standard treatment for hernia is tension-free repair using meshes.Globally,more than 200 new types of meshes are licensed each year.Howev...BACKGROUND Hernia is a common condition requiring abdominal surgery.The current standard treatment for hernia is tension-free repair using meshes.Globally,more than 200 new types of meshes are licensed each year.However,their clinical applications are associated with a series of complications,such as recurrence(10%-24%)and infection(0.5%-9.0%).In contrast,3D-printed meshes have significantly reduced the postoperative complications in patients.They have also shortened operating time and minimized the loss of mesh materials.In this study,we used the myopectineal orifice(MPO)data obtained from preoperative computer tomography(CT)-based 3D reconstruction for the production of 3D-printed biologic meshes.AIM To investigate the application of multislice spiral CT-based 3D reconstruction technique in 3D-printed biologic mesh for hernia repair surgery.METHODS We retrospectively analyzed 60 patients who underwent laparoscopic tension-free repair for inguinal hernia in the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019.This study included 30 males and 30 females,with a mean age of 40±5.6 years.Data on the MPO were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients.Anatomic points were set for the purpose of measurement based on the definition of MPO:A:The pubic tubercle;B:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis,C:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament,D:Intersection of the iliopsoas muscle and the inguinal ligament,and E:Intersection of the iliopsoas muscle and the superior pubic ramus.The distance between the points was measured.All preoperative and intraoperative data were analyzed using the t test.Differences with P<0.05 were considered significant in comparative analysis.RESULTS The distance between points AB,AC,BC,DE,and AE based on preoperative and intraoperative data was 7.576±0.212 cm vs 7.573±0.266 cm,7.627±0.212 cm vs 7.627±0.212 cm,7.677±0.229 cm vs 7.567±0.786 cm,7.589±0.204 cm vs 7.512±0.21 cm,and 7.617±0.231 cm vs 7.582±0.189 cm,respectively.All differences were not statistically significant(P>0.05).CONCLUSION The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region.This technique can provide precise data for the production of 3D-printed biologic meshes.展开更多
Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficul...Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficult to achieve in the correct capacity.To date,no reports have focused on methods of combining fat with implanted prostheses for breast reconstruction.Using a newly designed bionic ink(i.e.,polyether F127 diacrylate(F127DA)&poly(ethylene glycol)diacrylate(PEGDA))and projection-based three-dimensional bioprinting(PBP),we report the development of a new method for printing porous prostheses.PEGDA was used to improve the printing precision of the prosthesis by increasing the gel point of F127DA and reducing the impact of external temperature.The compression modulus of the printed prosthesis was very close to that of prostheses currently used in clinical practice and to that of natural breasts.Finally,stromal vascular fraction gel(SVF-gel),a human fat extract,was injected into the pores of the synthesized prostheses to prepare a prosthesis mixed with adipose tissue.These were implanted subcutaneously in nude mice to observe their biological performance.After 14 and 28 days of observation,the prosthesis showed good biocompatibility,and adipose tissues grew well in and around the prosthesis.This result shows that a porous prosthesis containing pre-placed adipose tissues is a promising breast reconstruction material.展开更多
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional...At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.展开更多
With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in o...With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in outdoor hazy environments are prone to color distortion and low contrast;thus,the desired visual effect cannot be achieved and the difficulty of target detection is increased.Artificial intelligence(AI)solutions provide great help for dehazy images,which can automatically identify patterns or monitor the environment.Therefore,we propose a 3D reconstruction method of dehazed images for smart cities based on deep learning.First,we propose a fine transmission image deep convolutional regression network(FT-DCRN)dehazing algorithm that uses fine transmission image and atmospheric light value to compute dehazed image.The DCRN is used to obtain the coarse transmission image,which can not only expand the receptive field of the network but also retain the features to maintain the nonlinearity of the overall network.The fine transmission image is obtained by refining the coarse transmission image using a guided filter.The atmospheric light value is estimated according to the position and brightness of the pixels in the original hazy image.Second,we use the dehazed images generated by the FT-DCRN dehazing algorithm for 3D reconstruction.An advanced relaxed iterative fine matching based on the structure from motion(ARI-SFM)algorithm is proposed.The ARISFM algorithm,which obtains the fine matching corner pairs and reduces the number of iterations,establishes an accurate one-to-one matching corner relationship.The experimental results show that our FT-DCRN dehazing algorithm improves the accuracy compared to other representative algorithms.In addition,the ARI-SFM algorithm guarantees the precision and improves the efficiency.展开更多
This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, w...This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shapers accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06 mm.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the National Natural Science Foundation of China(No.11875129)+3 种基金the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY08)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02).
文摘As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
文摘BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative rehabilitation.However,the effect of surgery on patients'left coronary artery and its vascular reconstruction have not been deeply discussed.With the development of medical imaging technology,3D vascular reconstruction has become an effective means to evaluate the curative effect of surgery.AIM To investigate the clinical value of preoperative 3D vascular reconstruction in LLAR of rectal cancer with the left colic artery(LCA)preserved.METHODS A retrospective cohort study was performed to analyze the clinical data of 146 patients who underwent LLAR for rectal cancer with LCA preservation from January to December 2023 in our hospital.All patients underwent LLAR of rectal cancer with the LCA preserved,and the intraoperative and postoperative data were complete.The patients were divided into a reconstruction group(72 patients)and a nonreconstruction group(74 patients)according to whether 3D vascular reconstruction was performed before surgery.The clinical features,operation conditions,complications,pathological results and postoperative recovery of the two groups were collected and compared.RESULTS A total of 146 patients with rectal cancer were included in the study,including 72 patients in the reconstruction group and 74 patients in the nonreconstruction group.There were 47 males and 25 females in the reconstruction group,aged(59.75±6.2)years,with a body mass index(BMI)(24.1±2.2)kg/m^(2),and 51 males and 23 females in the nonreconstruction group,aged(58.77±6.1)years,with a BMI(23.6±2.7)kg/m^(2).There was no significant difference in the baseline data between the two groups(P>0.05).In the submesenteric artery reconstruction group,35 patients were type Ⅰ,25 patients were type Ⅱ,11 patients were type Ⅲ,and 1 patient was type Ⅳ.There were 37 type Ⅰ patients,24 type Ⅱ patients,12 type Ⅲ patients,and 1 type Ⅳ patient in the nonreconstruction group.There was no significant difference in arterial typing between the two groups(P>0.05).The operation time of the reconstruction group was 162.2±10.8 min,and that of the nonreconstruction group was 197.9±19.1 min.Compared with that of the reconstruction group,the operation time of the two groups was shorter,and the difference was statistically significant(t=13.840,P<0.05).The amount of intraoperative blood loss was 30.4±20.0 mL in the reconstruction group and 61.2±26.4 mL in the nonreconstruction group.The amount of blood loss in the reconstruction group was less than that in the control group,and the difference was statistically significant(t=-7.930,P<0.05).The rates of anastomotic leakage(1.4%vs 1.4%,P=0.984),anastomotic hemorrhage(2.8%vs 4.1%,P=0.672),and postoperative hospital stay(6.8±0.7 d vs 7.0±0.7 d,P=0.141)were not significantly different between the two groups.CONCLUSION Preoperative 3D vascular reconstruction technology can shorten the operation time and reduce the amount of intraoperative blood loss.Preoperative 3D vascular reconstruction is recommended to provide an intraoperative reference for laparoscopic low anterior resection with LCA preservation.
基金supported by ZTE Industry University Institute Cooperation Funds under Grant No.HCCN20221102002.
文摘Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide range of applications in fields such as virtual reality,augmented reality,indoor navigation,and game development.Existing methods based on multi-view RGB images have made significant progress in 3D reconstruction.These image-based reconstruction methods not only possess good expressive power and generalization performance,but also handle complex geometric shapes and textures effectively.Despite facing challenges such as lighting variations,occlusion,and texture loss in indoor scenes,these challenges can be effectively addressed through deep neural networks,neural implicit surface representations,and other techniques.The technology of indoor 3D reconstruction based on multi-view RGB images has a promising future.It not only provides immersive and interactive virtual experiences but also brings convenience and innovation to indoor navigation,interior design,and virtual tours.As the technology evolves,these image-based reconstruction methods will be further improved to provide higher quality and more accurate solutions to indoor scene reconstruction.
文摘The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement patterns,crucial for understanding feeding behaviors,have been thoroughly studied in this group,studies on non-tyrannosaurid tyrannosauroids are relatively scarce.This study utilizes high-resolution CT data to investigate the tooth replacement pattern in two specimens of Guanlong wucaii,a Late Jurassic tyrannosauroid,and provides insights into the evolution of tooth replacement across Tyrannosauroidea.Second-generation replacement teeth,a rarity observed mainly in giant predatory theropods(e.g.some tyrannosaurids),were detected in the dentary dentition of the juvenile Guanlong.Zahnreihen reconstructions display a consistent cephalad alternating tooth replacement pattern in the maxilla and the dentary of both of the examined individuals,with Z-spacing values exceeding 2.0.As Guanlong grows,the Z-spacing value in the maxillary dentition increases,resembling the ontogenetic changes documented in the Tyrannosauridae.Additionally,like Tarbosaurus,Guanlong also displays a discontinuity between the tooth replacement waves at the premaxilla-maxilla boundary.This study thus demonstrates that some tyrannosaurid-like tooth replacement patterns were acquired before the origin of the Tyrannosauridae.
基金supported by National Natural Science Foundation of China(Nos.12175227 and 12375226)the National Magnetic Confinement Fusion Program of China(No.2022YFE03100004)+1 种基金the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金This work was supported by the National Key Research and Development Program of China(No.18YFB1105600,2018YFC1106800)National Natural Science Foundation of China(51875518)+1 种基金Sichuan Province Science&Technology Department Projects(2016CZYD0004,2017SZ0001,2018GZ0142,2019YFH0079)Research Foundation for Young Teachers of Sichuan University(2018SCUH0017)and The“111”Project(No.B16033).
文摘The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.
基金This work is supported by National Key Research and Development Program of China(2016YFC1100600)the National Natural Science Foundation of China(81972058 and 81902194)the Multicenter Clinical Research Project of Shanghai Jiao Tong University School of Medicine(DLY201506).
文摘Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.
文摘The clinical efficacy was compared between 3D navigation-assisted percutaneous iliosacral screw(3DPS)and minimally invasive reconstruction plate(MIRP)in treating sacroiliac complex injury and the surgical procedures of 3DPS were introduced.A retrospective analysis was performed on 49 patients with sacroiliac complex injury from March 2013 to May 2017.Twenty-one cases were treated by 3DPS,and 28 cases by MIRP.Intraoperative indexes as operative time,blood loss,incision length,length of hospital stay and postoperative complications were respectively documented.Quality of reduction was postoperatively evaluated by Matta radiological criteria,and clinical effect was assessed by Majeed scoring criteria at the last followup.Operative time and hospital stay were significantly shortened,and blood loss,and incision length were significantly reduced in 3DPS group as compared with those in MIRP group(P<0.05).No statistically significant difference was found between 3DPS group and MIRP group in the assessment of reduction and function(P>0.05).It was concluded that both 3DPS and MIRP can effectively treat the sacroiliac complex injury,and 3DPS can provide an accurate,safe and minimally invasive fixation with shorter operative time and hospital stay.
基金supported in part by The National Key Research and Development Program of China(2018YFC2001302)the National Natural Science Foundation of China(61976209)+1 种基金CAS International Collaboration Key Project(173211KYSB20190024)Strategic Priority Research Program of CAS(XDB32040000)。
文摘Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh.Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field.Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and1.2 mm, separately. The average reconstruction time is 3 minutes.
文摘3D reconstruction of worn parts is the foundation for remanufacturing system based on robotic arc welding, because it can provide 3D geometric information for robot task plan. In this investigation, a novel 3D reconstruction system based on linear structured light vision sensing is developed. This system hardware consists of a MTC368-CB CCD camera, a MLH-645 laser projector and a DH-CG300 image grabbing card. This system software is developed to control the image data capture. In order to reconstruct the 3D geometric information from the captured image, a two steps rapid calibration algorithm is proposed. The 3D reconstruction experiment shows a satisfactory result.
基金the National Natural Science Foundation of China under Grant 61902311in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044.
文摘The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the acquisition of images in real-time,motion blur,caused by camera shaking or human motion,appears.Deep learning-based intelligent control applied in vision can help us solve the problem.To this end,we propose a 3D reconstruction method for motion-blurred images using deep learning.First,we develop a BF-WGAN algorithm that combines the bilateral filtering(BF)denoising theory with a Wasserstein generative adversarial network(WGAN)to remove motion blur.The bilateral filter denoising algorithm is used to remove the noise and to retain the details of the blurred image.Then,the blurred image and the corresponding sharp image are input into the WGAN.This algorithm distinguishes the motion-blurred image from the corresponding sharp image according to the WGAN loss and perceptual loss functions.Next,we use the deblurred images generated by the BFWGAN algorithm for 3D reconstruction.We propose a threshold optimization random sample consensus(TO-RANSAC)algorithm that can remove the wrong relationship between two views in the 3D reconstructed model relatively accurately.Compared with the traditional RANSAC algorithm,the TO-RANSAC algorithm can adjust the threshold adaptively,which improves the accuracy of the 3D reconstruction results.The experimental results show that our BF-WGAN algorithm has a better deblurring effect and higher efficiency than do other representative algorithms.In addition,the TO-RANSAC algorithm yields a calculation accuracy considerably higher than that of the traditional RANSAC algorithm.
基金The study was partially supported by the Innovative Scientific Team Research Fund(2018IT100212)Science and Technology Bureau,Fo Shan,Guangdong,China.It was also partially supported by the Health and Medical Research Fund(05161626)Food and Health Bureau,Hong Kong,China.
文摘Craniomaxillofacial reconstruction implants,which are extensively used in head and neck surgery,are conventionally made in standardized forms.During surgery,the implant must be bended manually to match the anatomy of the individual bones.The bending process is time-consuming,especially for inexperienced surgeons.Moreover,repetitive bending may induce undesirable internal stress concentration,resulting in fatigue under masticatory loading in v iv o and causing various complications such as implant fracture,screw loosening,and bone resorption.There have been reports on the use of patient-specific 3D-printed implants for craniomaxillofacial reconstruction,although few reports have considered implant quality.In this paper,we present a systematic approach for making 3D-printed patientspecific surgical implants for craniomaxillofacial reconstruction.The approach consists of three parts:First,an easy-to-use design module is developed using Solidworks®software,which helps surgeons to design the implants and the axillary fixtures for surgery.Design engineers can then carry out the detailed design and use finite-element modeling(FEM)to optimize the design.Second,the fabrication process is carried out in three steps:0 testing the quality of the powder;(2)setting up the appropriate process parameters and running the 3D printing process;and (3)conducting post-processing treatments(i.e.,heat and surface treatments)to ensure the quality and performance of the implant.Third,the operation begins after the final checking of the implant and sterilization.After the surgery,postoperative rehabilitation follow-up can be carried out using our patient tracking software.Following this systematic approach,we have successfully conducted a total of 41 surgical cases.3D-printed patient-specific implants have a number of advantages;in particular,their use reduces surgery time and shortens patient recovery time.Moreover,the presented approach helps to ensure implant quality.
文摘The development of digital intelligent diagnostic and treatment technology has opened countless new opportunities for liver surgery from the era of digital anatomy to a new era of digital diagnostics,virtual surgery simulation and using the created scenarios in real-time surgery using mixed reality.In this article,we described our experience on developing a dedicated 3 dimensional visualization and reconstruction software for surgeons to be used in advanced liver surgery and living donor liver transplantation.Furthermore,we shared the recent developments in the field by explaining the outreach of the software from virtual reality to augmented reality and mixed reality.
基金Supported by the Shanxi Provincial Key Research and Development Program,No.201903D321175.
文摘BACKGROUND Hernia is a common condition requiring abdominal surgery.The current standard treatment for hernia is tension-free repair using meshes.Globally,more than 200 new types of meshes are licensed each year.However,their clinical applications are associated with a series of complications,such as recurrence(10%-24%)and infection(0.5%-9.0%).In contrast,3D-printed meshes have significantly reduced the postoperative complications in patients.They have also shortened operating time and minimized the loss of mesh materials.In this study,we used the myopectineal orifice(MPO)data obtained from preoperative computer tomography(CT)-based 3D reconstruction for the production of 3D-printed biologic meshes.AIM To investigate the application of multislice spiral CT-based 3D reconstruction technique in 3D-printed biologic mesh for hernia repair surgery.METHODS We retrospectively analyzed 60 patients who underwent laparoscopic tension-free repair for inguinal hernia in the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019.This study included 30 males and 30 females,with a mean age of 40±5.6 years.Data on the MPO were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients.Anatomic points were set for the purpose of measurement based on the definition of MPO:A:The pubic tubercle;B:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis,C:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament,D:Intersection of the iliopsoas muscle and the inguinal ligament,and E:Intersection of the iliopsoas muscle and the superior pubic ramus.The distance between the points was measured.All preoperative and intraoperative data were analyzed using the t test.Differences with P<0.05 were considered significant in comparative analysis.RESULTS The distance between points AB,AC,BC,DE,and AE based on preoperative and intraoperative data was 7.576±0.212 cm vs 7.573±0.266 cm,7.627±0.212 cm vs 7.627±0.212 cm,7.677±0.229 cm vs 7.567±0.786 cm,7.589±0.204 cm vs 7.512±0.21 cm,and 7.617±0.231 cm vs 7.582±0.189 cm,respectively.All differences were not statistically significant(P>0.05).CONCLUSION The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region.This technique can provide precise data for the production of 3D-printed biologic meshes.
基金This work was supported by the National Key Research andDevelopment Program of China(No.2018YFA0703000)the National Natural Science Foundation of China(Nos.T2121004,52235007,and 82203602)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22H160020 to JWThis work was also supported by Start-up Funding of Zhejiang Provincial People’s Hospital(No.ZRY2021A001 to JW)Basic Scientific Research Funds of Department of Education of Zhejiang Province(No.KYQN202109 to JW).
文摘Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficult to achieve in the correct capacity.To date,no reports have focused on methods of combining fat with implanted prostheses for breast reconstruction.Using a newly designed bionic ink(i.e.,polyether F127 diacrylate(F127DA)&poly(ethylene glycol)diacrylate(PEGDA))and projection-based three-dimensional bioprinting(PBP),we report the development of a new method for printing porous prostheses.PEGDA was used to improve the printing precision of the prosthesis by increasing the gel point of F127DA and reducing the impact of external temperature.The compression modulus of the printed prosthesis was very close to that of prostheses currently used in clinical practice and to that of natural breasts.Finally,stromal vascular fraction gel(SVF-gel),a human fat extract,was injected into the pores of the synthesized prostheses to prepare a prosthesis mixed with adipose tissue.These were implanted subcutaneously in nude mice to observe their biological performance.After 14 and 28 days of observation,the prosthesis showed good biocompatibility,and adipose tissues grew well in and around the prosthesis.This result shows that a porous prosthesis containing pre-placed adipose tissues is a promising breast reconstruction material.
基金supported by the National Natural Science Foundation of China(No.81171731)the Project of Chengdu Science and Technology Bureau(Nos.2021-YF05-01619-SN and 2021-RC05-00022-CG)+2 种基金the Science and Technology Project of Tibet Autonomous Region(Nos.XZ202202YD0013C and XZ201901-GB-08)the Sichuan Science and Technology Program(No.2022YFG0066)the 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYJC21026,ZYGD21001 and ZYJC21077).
文摘At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.
基金supported in part by the National Natural Science Foundation of China under Grant 61902311in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044.
文摘With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in outdoor hazy environments are prone to color distortion and low contrast;thus,the desired visual effect cannot be achieved and the difficulty of target detection is increased.Artificial intelligence(AI)solutions provide great help for dehazy images,which can automatically identify patterns or monitor the environment.Therefore,we propose a 3D reconstruction method of dehazed images for smart cities based on deep learning.First,we propose a fine transmission image deep convolutional regression network(FT-DCRN)dehazing algorithm that uses fine transmission image and atmospheric light value to compute dehazed image.The DCRN is used to obtain the coarse transmission image,which can not only expand the receptive field of the network but also retain the features to maintain the nonlinearity of the overall network.The fine transmission image is obtained by refining the coarse transmission image using a guided filter.The atmospheric light value is estimated according to the position and brightness of the pixels in the original hazy image.Second,we use the dehazed images generated by the FT-DCRN dehazing algorithm for 3D reconstruction.An advanced relaxed iterative fine matching based on the structure from motion(ARI-SFM)algorithm is proposed.The ARISFM algorithm,which obtains the fine matching corner pairs and reduces the number of iterations,establishes an accurate one-to-one matching corner relationship.The experimental results show that our FT-DCRN dehazing algorithm improves the accuracy compared to other representative algorithms.In addition,the ARI-SFM algorithm guarantees the precision and improves the efficiency.
基金This work was supported by Grant-in-Aid for Scientific Research (C) (No.17500119)
文摘This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shapers accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06 mm.