A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly ...A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning.展开更多
The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure....The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.UAVs offer unique advantages over stationary traffic cameras,including greater flexibility in monitoring large and dynamic urban areas.However,detecting small,densely packed vehicles in UAV imagery remains a significant challenge due to occlusion,variations in lighting,and the complexity of urban landscapes.Conventional models often struggle with these issues,leading to inaccurate detections and reduced performance in practical applications.To address these challenges,this paper introduces CFEMNet,an advanced deep learning model specifically designed for high-precision vehicle detection in complex urban environments.CFEMNet is built on the High-Resolution Network(HRNet)architecture and integrates a Context-aware Feature Extraction Module(CFEM),which combines multi-scale feature learning with a novel Self-Attention and Convolution layer setup within a Multi-scale Feature Block(MFB).This combination allows CFEMNet to accurately capture fine-grained details across varying scales,crucial for detecting small or partially occluded vehicles.Furthermore,the model incorporates an Equivalent Feed-Forward Network(EFFN)Block to ensure robust extraction of both spatial and semantic features,enhancing its ability to distinguish vehicles from similar objects.To optimize computational efficiency,CFEMNet employs a local window adaptation of Multi-head Self-Attention(MSA),which reduces memory overhead without sacrificing detection accuracy.Extensive experimental evaluations on the UAVDT and VisDrone-DET2018 datasets confirm CFEMNet’s superior performance in vehicle detection compared to existing models.This new architecture establishes CFEMNet as a benchmark for UAV-enabled traffic management,offering enhanced precision,reduced computational demands,and scalability for deployment in smart city applications.The advancements presented in CFEMNet contribute significantly to the evolution of smart city technologies,providing a foundation for intelligent and responsive traffic management systems that can adapt to the dynamic demands of urban environments.展开更多
World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technolog...World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technologies and Human Interaction to Non-Human Interaction). Traditional “stovepipes” among services are being eliminated and replaced with integrated systems that allow joint forces (combined Army, Air Force and navy) to seamlessly execute required tasks. This study was undertaken in conjunction with Geospatial Technology (Shows Space and Time) and Geospatial Intelligence Analysis (Use Algorithm, Use AI Concepts, IMINT and GEOINT). In order to successfully support current and future Ethiopian military operations in war zones, geospatial technologies and geospatial intelligence must be integrated to accommodate force structure evolution and mission requirement directives. The intent of joint intelligence operations is to integrate Ground, Air and Navy Forces at war zone and also give COP (“common operational picture”) for Operational and Tactical Commander Service and national intelligence capabilities into a unified effort that surpasses any single organizational effort and provides the most accurate and timely intelligence to commanders.展开更多
基金supported by the National Natural Science Foundation of China(41701499)the Sichuan Science and Technology Program(2018GZ0265)the Geomatics Technology and Application Key Laboratory of Qinghai Province(QHDX-2018-07)
文摘A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning.
基金funded by the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia through research group No.(RG-NBU-2022-1234).
文摘The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.UAVs offer unique advantages over stationary traffic cameras,including greater flexibility in monitoring large and dynamic urban areas.However,detecting small,densely packed vehicles in UAV imagery remains a significant challenge due to occlusion,variations in lighting,and the complexity of urban landscapes.Conventional models often struggle with these issues,leading to inaccurate detections and reduced performance in practical applications.To address these challenges,this paper introduces CFEMNet,an advanced deep learning model specifically designed for high-precision vehicle detection in complex urban environments.CFEMNet is built on the High-Resolution Network(HRNet)architecture and integrates a Context-aware Feature Extraction Module(CFEM),which combines multi-scale feature learning with a novel Self-Attention and Convolution layer setup within a Multi-scale Feature Block(MFB).This combination allows CFEMNet to accurately capture fine-grained details across varying scales,crucial for detecting small or partially occluded vehicles.Furthermore,the model incorporates an Equivalent Feed-Forward Network(EFFN)Block to ensure robust extraction of both spatial and semantic features,enhancing its ability to distinguish vehicles from similar objects.To optimize computational efficiency,CFEMNet employs a local window adaptation of Multi-head Self-Attention(MSA),which reduces memory overhead without sacrificing detection accuracy.Extensive experimental evaluations on the UAVDT and VisDrone-DET2018 datasets confirm CFEMNet’s superior performance in vehicle detection compared to existing models.This new architecture establishes CFEMNet as a benchmark for UAV-enabled traffic management,offering enhanced precision,reduced computational demands,and scalability for deployment in smart city applications.The advancements presented in CFEMNet contribute significantly to the evolution of smart city technologies,providing a foundation for intelligent and responsive traffic management systems that can adapt to the dynamic demands of urban environments.
文摘World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technologies and Human Interaction to Non-Human Interaction). Traditional “stovepipes” among services are being eliminated and replaced with integrated systems that allow joint forces (combined Army, Air Force and navy) to seamlessly execute required tasks. This study was undertaken in conjunction with Geospatial Technology (Shows Space and Time) and Geospatial Intelligence Analysis (Use Algorithm, Use AI Concepts, IMINT and GEOINT). In order to successfully support current and future Ethiopian military operations in war zones, geospatial technologies and geospatial intelligence must be integrated to accommodate force structure evolution and mission requirement directives. The intent of joint intelligence operations is to integrate Ground, Air and Navy Forces at war zone and also give COP (“common operational picture”) for Operational and Tactical Commander Service and national intelligence capabilities into a unified effort that surpasses any single organizational effort and provides the most accurate and timely intelligence to commanders.