期刊文献+
共找到214篇文章
< 1 2 11 >
每页显示 20 50 100
Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
1
作者 田婧希 金松昌 +2 位作者 张晓强 杨绍武 史殿习 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期292-304,共13页
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.... Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks. 展开更多
关键词 hyperchaotic system elliptic curve cryptosystem(ECC) 3D synchronous scrambled diffusion remote sensing image unmanned aerial vehicle(UAV)
下载PDF
High-resolution Remote Sensing Image Segmentation Using Minimum Spanning Tree Tessellation and RHMRF-FCM Algorithm 被引量:10
2
作者 Wenjie LIN Yu LI Quanhua ZHAO 《Journal of Geodesy and Geoinformation Science》 2020年第1期52-63,共12页
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i... It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively. 展开更多
关键词 STATIC minimum SPANNING TREE TESSELLATION shape parameter RHMRF FCM algorithm high-resolution remote sensing image segmentation
下载PDF
A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields 被引量:12
3
作者 Zongcheng ZUO Wen ZHANG Dongying ZHANG 《Journal of Geodesy and Geoinformation Science》 2020年第3期39-49,共11页
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a... Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset. 展开更多
关键词 high-resolution remote sensing image semantic segmentation deformable convolution network conditions random fields
下载PDF
Monitoring coal fires in Datong coalfield using multi-source remote sensing data 被引量:11
4
作者 汪云甲 田丰 +2 位作者 黄翌 王坚 魏长婧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3421-3428,共8页
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th... Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point. 展开更多
关键词 LANDSAT unmanned aerial vehicle infrared thermal imager coal fire Datong coalfield remote sensing
下载PDF
Monitoring of vegetation coverage based on high-resolution images 被引量:3
5
作者 Zhang Li Li Li-juan +1 位作者 Liang Li-qiao Li Jiu-yi 《Forestry Studies in China》 CAS 2007年第4期256-261,共6页
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin... Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage. 展开更多
关键词 vegetation coverage remote sensing measurement high-resolution image OBJECT-ORIENTATION
下载PDF
RepDDNet:a fast and accurate deforestation detection model with high-resolution remote sensing image
6
作者 Zhipan Wang Zhongwu Wang +3 位作者 Dongmei Yan Zewen Mo Hua Zhang Qingling Zhang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2013-2033,共21页
Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change informatio... Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency. 展开更多
关键词 Carbon neutral deforestation detection high-resolution remote sensing image deep learning reparameterization
原文传递
Monitoring the green evolution of vernacular buildings based on deep learning and multi-temporal remote sensing images
7
作者 Baohua Wen Fan Peng +4 位作者 Qingxin Yang Ting Lu Beifang Bai Shihai Wu Feng Xu 《Building Simulation》 SCIE EI CSCD 2023年第2期151-168,共18页
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut... The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs. 展开更多
关键词 courtyard buildings EVOLUTION deep learning high-resolution network remote sensing images
原文传递
Archimedes Optimization with Deep Learning Based Aerial Image Classification for Cybersecurity Enabled UAV Networks
8
作者 Faris Kateb Mahmoud Ragab 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2171-2185,共15页
The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns w... The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes.This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection(AODL-AICID)technique in secure UAV networks.The presented AODLAICID technique concentrates on two major processes:image classification and intrusion detection.For aerial image classification,the AODL-AICID technique encompasses MobileNetv2 feature extraction,Archimedes Optimization Algorithm(AOA)based hyperparameter optimizer,and backpropagation neural network(BPNN)based classifier.In addition,the AODLAICID technique employs a stacked bi-directional long short-term memory(SBLSTM)model to accomplish intrusion detection for cybersecurity in UAV networks.At the final stage,the Nadam optimizer is utilized for parameter tuning of the SBLSTM approach.The experimental validation of the AODLAICID technique is tested and the obtained values reported the improved performance of the AODL-AICID technique over other models. 展开更多
关键词 aerial image classification remote sensing intrusion detection CYBERSECURITY deep learning
下载PDF
Remote Sensing Classification of Marsh Wetland with Different Resolution Images 被引量:4
9
作者 李娜 谢高地 +2 位作者 周德民 张昌顺 焦翠翠 《Journal of Resources and Ecology》 CSCD 2016年第2期107-114,共8页
Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and l... Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and land cover patterns. Different spatial resolution images show different landscape characteristics. Several classification images were used to map and monitor wetland ecosystems of Honghe National Nature Reserve (HNNR) at a plant community scale. HNNR is a typical inland wetland and fresh water ecosystem in the North Temperate Zone. SPOT-5 10 m ×10 m, 20 m × 20 m, and 30 m×30 m images and Landsat -5 Thematic Mapper (TM) images were used to classify based on maximum likelihood classification (MLC) algorithms. In order to validate the precision of the classifications, this study used aerial photography classification maps as training samples because of their high accuracy. The accuracy of the derived classes was assessed with the discrete multivariate technique called KAPPA accuracy. The results indicate: (1) training samples are important to classification results. (2) Image classification accuracy is always affected by areal fraction and aggregation degree as well as by diversities and patch shape. (3) The core zone area is protected better than buffer zone and experimental zone wetland. The experimental zone degrades fast because of irrational development by humans. 展开更多
关键词 remote sensing classification Marsh wetland HNNR aerial photography image SPOT-5 TM
原文传递
Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method
10
作者 Jintian Cui Xin Zhang +1 位作者 Weisheng Wang Lei Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第1期178-190,共13页
Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas ... Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images. 展开更多
关键词 crop-type mapping synthetic aperture radar(SAR) high-resolution remote sensing image segmentation feature subset selection object-oriented classification
原文传递
基于时间序列植被指数的小麦条锈病抗性等级鉴定方法 被引量:2
11
作者 苏宝峰 刘砥柱 +2 位作者 陈启帆 韩德俊 吴建辉 《农业工程学报》 EI CAS CSCD 北大核心 2024年第4期155-165,共11页
条锈病严重影响小麦产量,培育抗条锈病的小麦品种至关重要。针对传统育种中抗性鉴定手段单一、效率低的问题,该研究提出了一种通过小麦冠层植被指数的时间序列实现对条锈病不同抗性等级的高效鉴定方法。该方法利用无人机采集自然发病的... 条锈病严重影响小麦产量,培育抗条锈病的小麦品种至关重要。针对传统育种中抗性鉴定手段单一、效率低的问题,该研究提出了一种通过小麦冠层植被指数的时间序列实现对条锈病不同抗性等级的高效鉴定方法。该方法利用无人机采集自然发病的育种群体小麦(共600个样本,516个基因型)冠层多时相的光谱图像,使用随机蛙跳算法和ReliefF算法筛选出6个条锈病病害严重度的敏感特征:归一化色素叶绿素指数(normalized pigment chlorophyll index,NPCI)、沃尔贝克指数(woebbecke index,WI)、叶绿素红边指数(chlorophyll index rededge,CIrededge)、绿大气抵抗植被指数(green atmospherically resistant index,GARI)、归一化差分植被指数(normalized difference vi,NDVI)、叶绿素绿指数(chlorophyll index green,CIgreen),这些敏感特征在试验群体中的时间序列符合条锈病的发病规律,验证了其作为条锈病发病严重度敏感特征的有效性;基于支持向量机(support vector machine,SVM)算法使用上述敏感特征建立条锈病病害严重度等级分类模型,在测试集的表现中,与使用未经过筛选的原始特征所建立的模型相比在精度、平均准确率、平均召回率和F1分数上分别仅下降6.2%、3.3%、2.7%、4.0%,证明了所筛选敏感特征的有效性;针对一般机器学习算法难以捕捉不同抗性等级样本之间较小的特征变化差异的问题,提出了一种从植被指数时间序列转化生成的二维图像中提取特征实现条锈病抗性等级分类的方法。将敏感特征中能够较好区分不同抗病等级的4个时间序列植被指数(NPCI、GARI、NDVI、WI),通过格拉姆角场方法生成格拉姆角和场图像,并制作成数据集,使用DenseNet121网络进行训练,以实现不同条锈病抗病等级的分类。建立的条锈病抗性等级分类模型中,由NPCI时间序列图像建立的分类模型测试效果最佳,其准确率为0.837,召回率为0.834,F1分数可达0.833,能够较好地实现对群体小麦不同品种(系)的条锈病抗性等级差异的区分,表明基于光谱植被指数时间序列的小麦条锈病抗性等级识别方法可以用于小麦抗病育种中抗性等级的鉴定,并可为其他作物的病害抗性等级鉴定提供一定的参考。 展开更多
关键词 无人机 遥感 机器学习 深度学习 小麦条锈病 多光谱成像 DenseNet121
下载PDF
农田环境下无人机图像并行拼接识别算法
12
作者 许鑫 张力 +4 位作者 岳继博 钟鹤鸣 王颖 刘杰 乔红波 《农业工程学报》 EI CAS CSCD 北大核心 2024年第9期154-163,共10页
为改善在农田环境下无人机图像计算速度和效率,该研究提出了一种农田环境下无人机图像并行拼接识别算法。利用倒二叉树并行拼接识别算法,通过提取图像拼接中的变换矩阵,实现拼接识别同时进行。根据边缘设备的CPU核心数和图像数量自动将... 为改善在农田环境下无人机图像计算速度和效率,该研究提出了一种农田环境下无人机图像并行拼接识别算法。利用倒二叉树并行拼接识别算法,通过提取图像拼接中的变换矩阵,实现拼接识别同时进行。根据边缘设备的CPU核心数和图像数量自动将图像拼接识别任务划分为多个子进程,并分配到不同核心上执行,以提高在农田环境下的计算效率。试验结果表明:相同试验环境和数据集条件下,倒二叉树并行拼接算法的拼接耗时相较于其他算法平均减少了60%~90%左右;在农田环境下,倒二叉树并行拼接识别相较于串行拼接识别的耗时减少了70%,图像识别的平均像素交并比提升了10.17个百分点,说明在农田环境下采用多线程倒二叉树并行算法可以更好地利用农田环境下边缘设备的计算资源,大幅提升无人机图像的拼接和识别的速度,为无人机的快速实时监测提供技术支撑。 展开更多
关键词 无人机 遥感 图像处理 全景拼接 多核CPU 多进程
下载PDF
IspecHyper多旋翼无人机高光谱影像处理方法研究
13
作者 马灿达 苏秋群 +4 位作者 谢国雪 黄启厅 杨绍锷 张秀龙 林垚君 《安徽农业科学》 CAS 2024年第17期233-237,共5页
为解决IspecHyper(莱森光学)多旋翼无人机高光谱成像系统缺乏数据处理配套软件,采集多航带高光谱数据误差大、坐标缺失、无法自动拼接等问题,以武鸣区太平镇角龙村柑橘种植基地为研究区,开展IspecHyper多旋翼无人机高光谱影像处理方法... 为解决IspecHyper(莱森光学)多旋翼无人机高光谱成像系统缺乏数据处理配套软件,采集多航带高光谱数据误差大、坐标缺失、无法自动拼接等问题,以武鸣区太平镇角龙村柑橘种植基地为研究区,开展IspecHyper多旋翼无人机高光谱影像处理方法研究。首先,利用IspecHyper-VM200成像系统获取研究区高清照片和多航带高光谱影像数据;其次,以高清照片为数据源,通过PXI4D Mapper软件预处理和ENVI软件影像几何校正,形成高分辨率无人机正射影像;最后,利用ENVI软件裁剪多航带高光谱影像扭曲边界数据,以无人机正射影像为基准完成几何校正,进而通过影像镶嵌和光谱转换计算,形成高光谱反射率影像产品。结果表明,该研究形成的技术方法可有效解决IspecHyper多旋翼无人机高光谱影像处理存在问题,同时为无人机高光谱影像处理提供技术参考。 展开更多
关键词 遥感 IspecHyper 无人机 高光谱影像 图像处理
下载PDF
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
14
作者 张善文 邵彧 +1 位作者 李萍 令伟锋 《弹箭与制导学报》 北大核心 2024年第3期51-58,共8页
航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer(MSU-Trans... 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer(MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。 展开更多
关键词 航空遥感图像飞机检测 多尺度U-Net TRANSFORMER 多尺度U-Net与Transformer
下载PDF
基于无人机倾斜摄影遥感技术的水土保持动态监测方法研究
15
作者 赵立中 《环境科学与管理》 CAS 2024年第9期134-137,168,共5页
为了能够充分了解土壤侵蚀分布,及时掌握水土流失变化趋势,提出基于无人机倾斜摄影遥感技术的水土保持动态监测方法。利用无人机从多个角度采集监测区域影像数据,并实施辐射定标和大气校正预处理,基于遥感影像数据提取土壤可蚀性因子、... 为了能够充分了解土壤侵蚀分布,及时掌握水土流失变化趋势,提出基于无人机倾斜摄影遥感技术的水土保持动态监测方法。利用无人机从多个角度采集监测区域影像数据,并实施辐射定标和大气校正预处理,基于遥感影像数据提取土壤可蚀性因子、土地利用因子、植被覆盖监测因子、坡度因子,通过计算获取水土保持系数并划分等级。监测结果表明:区域1水土保持系数呈现“V字形”,区域2水土保持系数整体呈现“一字型”,区域3水土保持系数整体呈现逐渐上升状态。 展开更多
关键词 无人机倾斜摄影遥感技术 图像预处理 水土保持 监测因子 动态监测方法
下载PDF
基于改进Mask RCNN的遥感图像小目标检测算法研究 被引量:1
16
作者 张艺博 赵加坤 +2 位作者 陈攀 支杨丹 夏星浩 《计算机与数字工程》 2024年第3期880-885,共6页
随着航空遥感领域的不断发展,针对该场景下小型目标的检测已经成为目前研究领域中的一项重要工作。论文基于航空遥感图像场景,提出了一种针对航空遥感领域中小目标检测的优化方法。为了提高算法在小目标检测方面的实用性和准确性,论文在... 随着航空遥感领域的不断发展,针对该场景下小型目标的检测已经成为目前研究领域中的一项重要工作。论文基于航空遥感图像场景,提出了一种针对航空遥感领域中小目标检测的优化方法。为了提高算法在小目标检测方面的实用性和准确性,论文在Mask RCNN算法的基础上添加了空间注意力机制模块来对图像的背景做降噪处理,使用CIOU作为边界框回归损失函数进行优化,然后使用Kmeans聚类算法代替原始算法生成更加匹配小型目标的检测锚框。改进的Mask RCNN在航空遥感图像数据集下的检测精度达到61.89mAP,检测精度相对于目前主流的遥感图像检测算法R-FCN提升了17%,相对于Mask RCNN提高了2.4%,达到了当前条件下最好的检测效果。 展开更多
关键词 改进Mask RCNN 航空遥感图像 注意力机制 CIOU
下载PDF
基于冠层高度模型的遥感影像玉米倒伏范围提取
17
作者 赵莲 于亚杰 梁治华 《测绘通报》 CSCD 北大核心 2024年第3期127-133,共7页
精准提取玉米倒伏范围是准确进行田间管理、玉米产量损失估计的基础,无人机获取遥感影像机动灵活,是作物倒伏测量的热门手段。本文提出利用无人技术基于冠层高度差的玉米倒伏范围提取方法。首先通过可见光波段差异植被指数提取玉米背景... 精准提取玉米倒伏范围是准确进行田间管理、玉米产量损失估计的基础,无人机获取遥感影像机动灵活,是作物倒伏测量的热门手段。本文提出利用无人技术基于冠层高度差的玉米倒伏范围提取方法。首先通过可见光波段差异植被指数提取玉米背景土壤分布;然后提取玉米的高度;最后基于玉米高度,通过SVM和OSTU自动阈值法提取玉米倒伏范围。试验结果表明,利用SVM法3个样本分类精度分别为88.84%、89.52%和90.80%;OSTU自动阈值法分别为94.61%、89.74%和97.20%,稍优于前者。本文基于作物高度为结构特征参数,提取作物倒伏,机理明确且一定程度上消除了无人机成像不稳定的影响。 展开更多
关键词 无人机 遥感影像 倒伏 冠层高度模型 SVM OSTU
下载PDF
基于无人机遥感测绘技术的土壤有机污染监测方法研究
18
作者 冯健 《环境科学与管理》 CAS 2024年第4期128-132,共5页
为实时监测土壤有机污染,提出基于无人机遥感测绘技术的土壤有机污染监测方法。设计无人机遥感测绘装置,获取监测区域土壤光谱数据,应用小波变换算法去除土壤光谱数据的噪声信息,采用惩罚最小二乘法去除土壤光谱本底信息,通过LAR算法选... 为实时监测土壤有机污染,提出基于无人机遥感测绘技术的土壤有机污染监测方法。设计无人机遥感测绘装置,获取监测区域土壤光谱数据,应用小波变换算法去除土壤光谱数据的噪声信息,采用惩罚最小二乘法去除土壤光谱本底信息,通过LAR算法选择与提取光谱数据特征变量,衡量其与已知有机污染物质光谱特征变量的相似程度,判定监测区域土壤是否存在有机污染,并确定有机污染物质种类。实验数据显示:应用提出方法获得的监测区域土壤有机污染判定结果与实际结果保持一致,土壤有机污染物质监测因子最大值为0.98。 展开更多
关键词 土壤遥感图像 污染监测 特征提取 无人机遥感测绘技术 有机污染
下载PDF
无人机航测遥感图像边缘畸变自适应校正方法研究
19
作者 杨骁 《科技资讯》 2024年第11期62-64,共3页
为提升遥感图像边缘畸变处理清晰度,提出无人机航测遥感图像边缘畸变自适应校正方法研究。根据当前校正需求,先进行图像边缘畸变特征的提取,采用多阶的方式,提升校正的整体效率,并设定多阶自适应校正机制。基于此,构建遥感图像边缘畸变... 为提升遥感图像边缘畸变处理清晰度,提出无人机航测遥感图像边缘畸变自适应校正方法研究。根据当前校正需求,先进行图像边缘畸变特征的提取,采用多阶的方式,提升校正的整体效率,并设定多阶自适应校正机制。基于此,构建遥感图像边缘畸变自适应校正模型,采用线性放射辅助变换的方式来实现校正处理。测试结果表明:处理后图像边缘清晰度在第三阶段均可以达到300 ppi以上,具有稳定、灵活、高效的特点。 展开更多
关键词 无人机 航测遥感 图像边缘畸变 自适应校正 校正方法 遥感技术
下载PDF
基于奇异值分解的航空遥感图像小目标提取方法
20
作者 申晓平 《计算机测量与控制》 2024年第9期262-268,共7页
针对航空遥感图像中小目标提取受低秩噪声干扰导致的精度下降和漏检问题,提出了一种基于奇异值分解的提取方法;该方法利用奇异值分解准则,结合不均匀变化奇异值特征向量,有效提取小目标并计算奇异值变换能量增益;在此基础上,构建信号空... 针对航空遥感图像中小目标提取受低秩噪声干扰导致的精度下降和漏检问题,提出了一种基于奇异值分解的提取方法;该方法利用奇异值分解准则,结合不均匀变化奇异值特征向量,有效提取小目标并计算奇异值变换能量增益;在此基础上,构建信号空间杂波的协方差矩阵,以反映信号分布及信号间联系;通过奇异值分解矩阵,避免计算杂波协方差矩阵的影响,准确反映小目标的形状、大小、纹理等信息;进一步分解图像矩阵,获取行列像素强度信息,并通过正交矩阵分解和重建图像矩阵,实现图像压缩;将图像分为分散、完全叠加和部分叠加目标三部分,计算其能量衰减倍数,完成小目标提取;实验结果显示,该技术具有高召回率和准确率,船类小目标最大漏检量为4只,验证了其精准高效的提取效果。 展开更多
关键词 奇异值分解 航空遥感图像 小目标提取 能量衰减倍数
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部