This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth obser...This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service.展开更多
Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges...Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.展开更多
Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and...Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and chemical parameters on a global scale.Earth observation data has the 4V features(volume,variety,veracity,and velocity) of big data that are suitable for climate change research.Moreover,the large amount of data available from scientific satellites plays an important role.This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research,such as synchronous satelliteeaerialeground observation experiments,which provide extremely large and abundant datasets; Earth observational sensitive factors(e.g.,glaciers,lakes,vegetation,radiation,and urbanization); and global environmental change information and simulation systems.With the era of global environment change dawning,Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking.Inevitably,Earth observation big data will encounter opportunities and challenges brought about by global climate change.展开更多
Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data...Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data is required by many studies, including those on Earth's limited natural resources, the rapid development of economic and social needs, global change, extreme events, food security, water resources, sustainable economic and urban development, and emergency response. Application operation systems in many ministries and departments in China have entered a stage of sustainable development, and the State Key Project of High-Resolution Earth Observation Systems has been progressing since 2006. Earth observation technology in China has entered a period of rapid development.展开更多
The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynam...The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viab...China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viable Earth observation platform to provide high-quality,planetary-scale data.The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon.China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information.Programs such as the Big Earth Data Science Engineering Program(CASEarth)provide opportunities to integrate data and develop“Big Earth Data”platforms to add value to data through analysis and integration.Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development.With the rapid digital transformation of societies,and consequently increasing demand for big data and associated products,Digital Earth and the Digital Belt and Road Program(DBAR)allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.展开更多
Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit th...Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit the rise of global temperatures. The United Nations(UN) has set Sustainable Development Goals(SDGs) to transform our world in terms of closely linking human well-being, economic prosperity, and healthy environments. Sustainable development requires the support of spatial information and objective evaluation,and the capability of macroscopic, rapid, accurate Earth observation techniques plays an important role in sustainable development. Recently, Earth observation technologies are developing rapidly in China, where scientists are building coordinated, comprehensive and sustainable Earth observation systems for global monitoring programs. Recent efforts include the Digital Belt and Road Program(DBAR) and comparative studies of the "three poles". This and other researches will provide powerful support for solving problems such as global change and environmental degradation.展开更多
Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPM...Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPMODEL) model was applied for 2 basins in the tropical monsoon region. This is the first time that the land cover map of the CCI (Climate Change Initiative Land Cover Team) was prepared for input data instead of IGBP (International Geosphere-Biosphere Programme) land cover map as proposed in the demo version of the BTOPMC model. The calibration and validation results showed that the Nash-Sutcliffe coefficients for daily stream discharge were 77.5% and 68.7% at Cung Son station (Ba basin). The Nash-Sutcliffe coefficients for daily stream discharge were 79.4% and 69.0% at Binh Tuong station (Kone basin), respectively. Because of a stop in measuring the discharge at Binh Tuong station in 2007, this model was applied to simulate discharge during the period of 2008-2015. Furthermore, the effect of land cover on discharge at Cung Son station was considered. The annual discharge in 2010 at Cung Son decreased 8 m3/s in the comparison between two scenarios (land cover of 2000 and 2010). According to this result, it is possible to propose a wide application range of the DHMs model to the tropical monsoon river basins using earth observation data.展开更多
Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth obser...Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth observation satellite. Indian Television Network (National Channel) has introduced a radiofrequency accelerator to produce X-emission at resonance with an activation of artificial human environment under relay analogy in the presence of an Earth observation satellite. Thermonuclear reaction communicates several windows’ channel via Earth observation satellite. Star Television network communicates an artificial human environment under the influence of a relay circuit with different pulse code units of human brain with an active influence of an artificial sensation to generate the loss of humanity around the world.展开更多
The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the...The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the Excellence Center of Space Technology and Research (ECSTAR), in partnership with its spin-off startup, TeroSpace. The study aims to provide an in-depth analysis of the wildfire incidents in the region, utilizing advanced technologies such as satellite imagery and data analytics, and to identify ways to improve future wildfire management. In particular, the paper focuses on the wildfires including thermal area comparison that ravaged the land in Nakhon Nayok Province in central Thailand from March to April 18th, 2023. To conduct this study, the ECSTAR-TeroSpace analytic team utilized satellite images from Earth observation platforms: MODIS and Sentinel-2A. By presenting this case study, this paper contributes to the broader understanding of how to monitor and manage wildfires in a changing climate. The findings of this study underscore the importance of proactive and collaborative efforts in mitigating the negative impacts of wildfires in Nakhon Nayok and other regions in Thailand.展开更多
Earth observation (EO) provides the opportunity for periodic and spatially detailed assessment of the state of the environment in urban areas. In this study, the potential of EO based indicators (EI) to assess the sta...Earth observation (EO) provides the opportunity for periodic and spatially detailed assessment of the state of the environment in urban areas. In this study, the potential of EO based indicators (EI) to assess the state of environment in the urban agglomeration of Athens (UAA) is examined. EO based indicators as used in the study, include land surface temperature, land use, land cover and aerosols distribution. The indicators are also related to the household density and population density, as extracted from census data, for the same area. Indicators are applied at the municipal scale and are also used to estimate an aggregate environmental indicator (AEI), at municipal scale, by integrating all indicators mentioned above in a GIS environment. It is found that the urban agglomeration of Athens is practically “dichotomized”, by being divided in a western and eastern area, with considerably different environmental conditions. Results are considered important for focused interventions supporting environmental urban planning, whereas they represent the high potential of EO based indicators to monitor and assess the state of the urban environment.展开更多
The support given by Earth observation data and Earth system science play an increasingly important role in global change,regional sustainable development,extreme events,and the development of social and economic need...The support given by Earth observation data and Earth system science play an increasingly important role in global change,regional sustainable development,extreme events,and the development of social and economic needs.This field is also moving towards systematization,platforms,and standardized development.In December 2015,nearly 200 parties of the United Nations Framework Convention on Climate Change agreed in Paris to make arrangements for global action in response to climate change by 2020.China jointly issued a climate change adaptation strategy for cities in 2016 and then elevated national action to respond to climate change.China's Earth Observation and Earth Science development is facing new challenges as it supports the national civil space infrastructure and high-resolution Earth observation system.展开更多
The multi-platform,multi-band and multi-mode Earth Observation(EO) system has been established in China in recent years.The advanced technologies are playing more and more important role for sustainable development in...The multi-platform,multi-band and multi-mode Earth Observation(EO) system has been established in China in recent years.The advanced technologies are playing more and more important role for sustainable development in whole country.This paper introduces the results and achievements of EO monitoring for agriculture,EO surveying for land resources,EO monitoring for ecological environment,EO support for national surveying and national e-government,natural disaster monitoring and emergency response.It points out that the EO technologies could contribute more to the country,including in the field of global change in the coming decade.展开更多
Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information th...Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information through the application of Earth observation technologies and analyze and understand the macro-level changes of the Earth system from a spaial view. The technology of Earth observaion from space has incomparable advantages in the study of the Earth. This aricle introduces the 50-year development of Earth observaion in the world and the 30-year development of Earth observaion in China and reflects on the building of China's Earth observaion system.展开更多
An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geod...An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,展开更多
Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal varia...Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.展开更多
This paper concerns the mission scheduling problem for an agile Earth-observing satellite. Mission planning and action planning for the satellite are both taking into account. Multiple mission types( including multi-s...This paper concerns the mission scheduling problem for an agile Earth-observing satellite. Mission planning and action planning for the satellite are both taking into account. Multiple mission types( including multi-strip area,real time download request,and stereoscopic request) and complex satellite actions,such as observe action and data download action,are considered in this paper. Through reasonable analysis of specialties and operational constraints of agile satellites in observing process,the mission scheduling model under multiple objective conditions is constructed. A genetic algorithm combined with heuristic rules is designed to solve problem. Genetic algorithm is designed to arrange user missions and heuristic rules are used to arrange satellite actions. Experiment results suggest that our algorithm works well for the agile Earth-observing satellite scheduling problem.展开更多
We used the high-resolution spectroscopy to study the interactions that Tm3+ ion in a LiYF4 crystal is subjected to. Several crystal field transitions with low integral intensity were found not registered before by m...We used the high-resolution spectroscopy to study the interactions that Tm3+ ion in a LiYF4 crystal is subjected to. Several crystal field transitions with low integral intensity were found not registered before by means of ordinary spectroscopy. Spectral evidences for interionic, hyperfine, isotopic interactions, and for a resonant broadening of the ground state are presented.展开更多
The effort and cost required to convert satellite Earth Observation(EO)data into meaningful geophysical variables has prevented the systematic analysis of all available observations.To overcome these problems,we utili...The effort and cost required to convert satellite Earth Observation(EO)data into meaningful geophysical variables has prevented the systematic analysis of all available observations.To overcome these problems,we utilise an integrated High Performance Computing and Data environment to rapidly process,restructure and analyse the Australian Landsat data archive.In this approach,the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations–the EO Data Cube.This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement.We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous,25 m resolution observations.Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.展开更多
基金supported by National Basic Research Program of China(Grant No. 2012CB719906)
文摘This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service.
文摘Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.
基金funded by the International Cooperation and Exchanges National Natural Science Foundation of China (41120114001)
文摘Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and chemical parameters on a global scale.Earth observation data has the 4V features(volume,variety,veracity,and velocity) of big data that are suitable for climate change research.Moreover,the large amount of data available from scientific satellites plays an important role.This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research,such as synchronous satelliteeaerialeground observation experiments,which provide extremely large and abundant datasets; Earth observational sensitive factors(e.g.,glaciers,lakes,vegetation,radiation,and urbanization); and global environmental change information and simulation systems.With the era of global environment change dawning,Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking.Inevitably,Earth observation big data will encounter opportunities and challenges brought about by global climate change.
文摘Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data is required by many studies, including those on Earth's limited natural resources, the rapid development of economic and social needs, global change, extreme events, food security, water resources, sustainable economic and urban development, and emergency response. Application operation systems in many ministries and departments in China have entered a stage of sustainable development, and the State Key Project of High-Resolution Earth Observation Systems has been progressing since 2006. Earth observation technology in China has entered a period of rapid development.
基金supported by Hunan Provincial Innovation Foundation for Postgraduate(Grant No. CX2011B005)National University of Defense Technology Innovation Foundation for Postgraduate, China(GranNo. B110105)
文摘The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金Supported by the Chinese Academy of Sciences Strategic Priority Research Program of the Big Earth Data Science Engineering Program(XDA19090000,XDA19030000)。
文摘China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viable Earth observation platform to provide high-quality,planetary-scale data.The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon.China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information.Programs such as the Big Earth Data Science Engineering Program(CASEarth)provide opportunities to integrate data and develop“Big Earth Data”platforms to add value to data through analysis and integration.Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development.With the rapid digital transformation of societies,and consequently increasing demand for big data and associated products,Digital Earth and the Digital Belt and Road Program(DBAR)allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.
文摘Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit the rise of global temperatures. The United Nations(UN) has set Sustainable Development Goals(SDGs) to transform our world in terms of closely linking human well-being, economic prosperity, and healthy environments. Sustainable development requires the support of spatial information and objective evaluation,and the capability of macroscopic, rapid, accurate Earth observation techniques plays an important role in sustainable development. Recently, Earth observation technologies are developing rapidly in China, where scientists are building coordinated, comprehensive and sustainable Earth observation systems for global monitoring programs. Recent efforts include the Digital Belt and Road Program(DBAR) and comparative studies of the "three poles". This and other researches will provide powerful support for solving problems such as global change and environmental degradation.
文摘Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPMODEL) model was applied for 2 basins in the tropical monsoon region. This is the first time that the land cover map of the CCI (Climate Change Initiative Land Cover Team) was prepared for input data instead of IGBP (International Geosphere-Biosphere Programme) land cover map as proposed in the demo version of the BTOPMC model. The calibration and validation results showed that the Nash-Sutcliffe coefficients for daily stream discharge were 77.5% and 68.7% at Cung Son station (Ba basin). The Nash-Sutcliffe coefficients for daily stream discharge were 79.4% and 69.0% at Binh Tuong station (Kone basin), respectively. Because of a stop in measuring the discharge at Binh Tuong station in 2007, this model was applied to simulate discharge during the period of 2008-2015. Furthermore, the effect of land cover on discharge at Cung Son station was considered. The annual discharge in 2010 at Cung Son decreased 8 m3/s in the comparison between two scenarios (land cover of 2000 and 2010). According to this result, it is possible to propose a wide application range of the DHMs model to the tropical monsoon river basins using earth observation data.
文摘Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth observation satellite. Indian Television Network (National Channel) has introduced a radiofrequency accelerator to produce X-emission at resonance with an activation of artificial human environment under relay analogy in the presence of an Earth observation satellite. Thermonuclear reaction communicates several windows’ channel via Earth observation satellite. Star Television network communicates an artificial human environment under the influence of a relay circuit with different pulse code units of human brain with an active influence of an artificial sensation to generate the loss of humanity around the world.
文摘The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the Excellence Center of Space Technology and Research (ECSTAR), in partnership with its spin-off startup, TeroSpace. The study aims to provide an in-depth analysis of the wildfire incidents in the region, utilizing advanced technologies such as satellite imagery and data analytics, and to identify ways to improve future wildfire management. In particular, the paper focuses on the wildfires including thermal area comparison that ravaged the land in Nakhon Nayok Province in central Thailand from March to April 18th, 2023. To conduct this study, the ECSTAR-TeroSpace analytic team utilized satellite images from Earth observation platforms: MODIS and Sentinel-2A. By presenting this case study, this paper contributes to the broader understanding of how to monitor and manage wildfires in a changing climate. The findings of this study underscore the importance of proactive and collaborative efforts in mitigating the negative impacts of wildfires in Nakhon Nayok and other regions in Thailand.
文摘Earth observation (EO) provides the opportunity for periodic and spatially detailed assessment of the state of the environment in urban areas. In this study, the potential of EO based indicators (EI) to assess the state of environment in the urban agglomeration of Athens (UAA) is examined. EO based indicators as used in the study, include land surface temperature, land use, land cover and aerosols distribution. The indicators are also related to the household density and population density, as extracted from census data, for the same area. Indicators are applied at the municipal scale and are also used to estimate an aggregate environmental indicator (AEI), at municipal scale, by integrating all indicators mentioned above in a GIS environment. It is found that the urban agglomeration of Athens is practically “dichotomized”, by being divided in a western and eastern area, with considerably different environmental conditions. Results are considered important for focused interventions supporting environmental urban planning, whereas they represent the high potential of EO based indicators to monitor and assess the state of the urban environment.
文摘The support given by Earth observation data and Earth system science play an increasingly important role in global change,regional sustainable development,extreme events,and the development of social and economic needs.This field is also moving towards systematization,platforms,and standardized development.In December 2015,nearly 200 parties of the United Nations Framework Convention on Climate Change agreed in Paris to make arrangements for global action in response to climate change by 2020.China jointly issued a climate change adaptation strategy for cities in 2016 and then elevated national action to respond to climate change.China's Earth Observation and Earth Science development is facing new challenges as it supports the national civil space infrastructure and high-resolution Earth observation system.
文摘The multi-platform,multi-band and multi-mode Earth Observation(EO) system has been established in China in recent years.The advanced technologies are playing more and more important role for sustainable development in whole country.This paper introduces the results and achievements of EO monitoring for agriculture,EO surveying for land resources,EO monitoring for ecological environment,EO support for national surveying and national e-government,natural disaster monitoring and emergency response.It points out that the EO technologies could contribute more to the country,including in the field of global change in the coming decade.
文摘Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information through the application of Earth observation technologies and analyze and understand the macro-level changes of the Earth system from a spaial view. The technology of Earth observaion from space has incomparable advantages in the study of the Earth. This aricle introduces the 50-year development of Earth observaion in the world and the 30-year development of Earth observaion in China and reflects on the building of China's Earth observaion system.
文摘An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,
基金supported by the National Science and Technology Support Plan of China (2015BAD07B02)
文摘Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.
基金Sponsored by the National Natural Science Foundation of China(Grant No.70601035 and 70801062)
文摘This paper concerns the mission scheduling problem for an agile Earth-observing satellite. Mission planning and action planning for the satellite are both taking into account. Multiple mission types( including multi-strip area,real time download request,and stereoscopic request) and complex satellite actions,such as observe action and data download action,are considered in this paper. Through reasonable analysis of specialties and operational constraints of agile satellites in observing process,the mission scheduling model under multiple objective conditions is constructed. A genetic algorithm combined with heuristic rules is designed to solve problem. Genetic algorithm is designed to arrange user missions and heuristic rules are used to arrange satellite actions. Experiment results suggest that our algorithm works well for the agile Earth-observing satellite scheduling problem.
基金supported by the Russian Academy of Sciences under the grant 8.1 of the Program "Quantum macrophysics"the Russian Foundation for Basic Research
文摘We used the high-resolution spectroscopy to study the interactions that Tm3+ ion in a LiYF4 crystal is subjected to. Several crystal field transitions with low integral intensity were found not registered before by means of ordinary spectroscopy. Spectral evidences for interionic, hyperfine, isotopic interactions, and for a resonant broadening of the ground state are presented.
文摘The effort and cost required to convert satellite Earth Observation(EO)data into meaningful geophysical variables has prevented the systematic analysis of all available observations.To overcome these problems,we utilise an integrated High Performance Computing and Data environment to rapidly process,restructure and analyse the Australian Landsat data archive.In this approach,the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations–the EO Data Cube.This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement.We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous,25 m resolution observations.Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.