This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions betwe...This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.展开更多
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab...To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.展开更多
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and...The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.展开更多
The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were invest...The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory.展开更多
Cost overrun is a common problem in construction projects worldwide.Most Indian construction projects,particularly those involving high-rise buildings,have had severe cost overruns.For managers,architects,engineers,an...Cost overrun is a common problem in construction projects worldwide.Most Indian construction projects,particularly those involving high-rise buildings,have had severe cost overruns.For managers,architects,engineers,and contractors,completing building projects within the specified cost budget has become the most important and hard assignment.Since it is common for high-rise building projects to go over budget,the aim of this study is to find out the causes of cost overruns and provide effective measures.The study found 70 cost overrun factors based on a comprehensive literature review and expert opinions.A Google form questionnaire was distributed to 150 construction professionals across India.After following up,101 of the 150 responses were received.A five-point Likert scale was used and the acquired data was analyzed and ranked using the Relative Importance Index(RII)technique.According to the findings of RII,the top ten critical factors influencing cost overruns were frequent change orders during construction by the owner,delay in construction,escalation of material prices,market inflation or deflation,rework,frequent changes in design,inaccurate evaluation of the project timeline,unforeseen ground condition,inaccurate quantity take-off,and delay in progressive payment by the owner.Spearman’s rank correlation test revealed that there is a very significant relationship between the rankings of factors provided by the owner,the consultant,and the contractor.In addition,a factor analysis tool in the SPSS software was also used to categorize the seventy factors into sixteen core components.The top ten critical factors were presented to subject matter experts,and their suggestions were being compiled.These results are expected to help construction professionals minimize cost overruns,improve cost control measures,and initiate future research.展开更多
A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based ...A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.展开更多
Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in an...Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in anti-seismic design in the future and effectively reduce the damage on buildings caused by earthquakes.In this paper,we analyzed the basic characteristics of a course in civil engineering major,which is Anti-Seismic Design of Building Structures,and the shortcomings of traditional teaching.It is proposed that the 3-degrees and 8-combinations teaching mode of anti-seismic design of building structures can effectively improve students’autonomy and enthusiasm in learning,helps to cultivate professional ethics among students,and improve their ability to apply what they have learned.展开更多
In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a ...In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.展开更多
First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relat...First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.展开更多
Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an importan...Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an important issue for designers.One of the best systems is the diagrid method which is built with diagonal elements with no columns for manufacturing tall buildings.In this study,the effect of the distribution of the tuned mass damper(TMD)on the structural responses of diagrid tall buildings was investigated using a new dynamic method.So,a diagrid structural systems with variable height with TMDs was solved as an example of structure.The reason for the selection of the diagrid system was the formation of a stiffness matrix for the diagonal and angular elements.Therefore,the effect of TMDs distribution on the story drift,base shear and structural behaviour were studied.The obtained outcomes showed that the TMDs distribution does not significantly affect on improving the behaviour of the diagrid structural system during an earthquake.Furthermore,the new dynamic scheme represented in this study has good performance for analyzing different systems.Abbreviation:TMD-tuned mass damper;SATMD-semiactive-tuned mass dampers;MDOF-multiple degrees of freedom;m_(i)-mass of ith story of the building;c_(i)-damping coefficient of the ith story of the building;k_(i)-stiffness of ith story of the building;x_(i)-displacement of the ith story of the building;md-mass of damper;c_(d)-damping coefficient of the damper;k_(d)-stiffness of damper;x_(d)-displacement of TMD;M_(i)-generalized mass of the ith normal mode;C_(i)-generalized damping of the ith normal mode;K_(i)-generalized stiffness of the ith normal mode;K_(i)(t)-generalized load of the ith normal mode;Y_(i)(t)-generalized displacement of the ith normal mode;[M]-matrices of mass;[C]-matrices of damping;{P(t)}-consequence external forces;N_(i)(τ)-interpolation functions;[Ai]-mechanical properties of the structure.展开更多
As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the ...As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.展开更多
With the rapid development of China's economy, the modernization drive and the process of urbanization continue to advance, land for urban construction is becoming more and tenser and land prices are rising steadily,...With the rapid development of China's economy, the modernization drive and the process of urbanization continue to advance, land for urban construction is becoming more and tenser and land prices are rising steadily, there are more and more high-rise buildings, its density is also increasing. With the increasing number trend of high-rise building development, anti-seismic building requirement as an important part of architectural design is worthy of our exploration and study. Seismic resistance has become an important subject of engineering design. This paper will discuss the technical principle of seismic design in building structure design, so as to optimize the seismic design of high-rise building structure better.展开更多
Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main c...Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main causes of weathering were analyzed on the basis of summarizing the common types of weathering characterization.The results showed that the weathering characterization was mainly reflected in the surface defects of wood structures,such as cracking,discoloration,peeling,wind erosion wear,and so on.The coating technology on the surface of constructions was the main artificial factor affecting the surface defects of constructions.In the case of similar surface decoration conditions,sunlight and moisture were the main natural factors affecting the weathering of wooden buildings,which will promote the process of weathering.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu...Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.展开更多
Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Sei...Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.展开更多
The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an impo...The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50378041) and the Specialized Research Fund for theDoctoral Program of Higher Education (No. 20030487016), China
文摘This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金supported by the Natural Science Foundation of China(52122811)。
文摘To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.
文摘The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.
文摘The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory.
文摘Cost overrun is a common problem in construction projects worldwide.Most Indian construction projects,particularly those involving high-rise buildings,have had severe cost overruns.For managers,architects,engineers,and contractors,completing building projects within the specified cost budget has become the most important and hard assignment.Since it is common for high-rise building projects to go over budget,the aim of this study is to find out the causes of cost overruns and provide effective measures.The study found 70 cost overrun factors based on a comprehensive literature review and expert opinions.A Google form questionnaire was distributed to 150 construction professionals across India.After following up,101 of the 150 responses were received.A five-point Likert scale was used and the acquired data was analyzed and ranked using the Relative Importance Index(RII)technique.According to the findings of RII,the top ten critical factors influencing cost overruns were frequent change orders during construction by the owner,delay in construction,escalation of material prices,market inflation or deflation,rework,frequent changes in design,inaccurate evaluation of the project timeline,unforeseen ground condition,inaccurate quantity take-off,and delay in progressive payment by the owner.Spearman’s rank correlation test revealed that there is a very significant relationship between the rankings of factors provided by the owner,the consultant,and the contractor.In addition,a factor analysis tool in the SPSS software was also used to categorize the seventy factors into sixteen core components.The top ten critical factors were presented to subject matter experts,and their suggestions were being compiled.These results are expected to help construction professionals minimize cost overruns,improve cost control measures,and initiate future research.
文摘A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.
文摘Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in anti-seismic design in the future and effectively reduce the damage on buildings caused by earthquakes.In this paper,we analyzed the basic characteristics of a course in civil engineering major,which is Anti-Seismic Design of Building Structures,and the shortcomings of traditional teaching.It is proposed that the 3-degrees and 8-combinations teaching mode of anti-seismic design of building structures can effectively improve students’autonomy and enthusiasm in learning,helps to cultivate professional ethics among students,and improve their ability to apply what they have learned.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371,62003029)Beijing Natural Science Foundation(JQ20026)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.
文摘First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.
文摘Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an important issue for designers.One of the best systems is the diagrid method which is built with diagonal elements with no columns for manufacturing tall buildings.In this study,the effect of the distribution of the tuned mass damper(TMD)on the structural responses of diagrid tall buildings was investigated using a new dynamic method.So,a diagrid structural systems with variable height with TMDs was solved as an example of structure.The reason for the selection of the diagrid system was the formation of a stiffness matrix for the diagonal and angular elements.Therefore,the effect of TMDs distribution on the story drift,base shear and structural behaviour were studied.The obtained outcomes showed that the TMDs distribution does not significantly affect on improving the behaviour of the diagrid structural system during an earthquake.Furthermore,the new dynamic scheme represented in this study has good performance for analyzing different systems.Abbreviation:TMD-tuned mass damper;SATMD-semiactive-tuned mass dampers;MDOF-multiple degrees of freedom;m_(i)-mass of ith story of the building;c_(i)-damping coefficient of the ith story of the building;k_(i)-stiffness of ith story of the building;x_(i)-displacement of the ith story of the building;md-mass of damper;c_(d)-damping coefficient of the damper;k_(d)-stiffness of damper;x_(d)-displacement of TMD;M_(i)-generalized mass of the ith normal mode;C_(i)-generalized damping of the ith normal mode;K_(i)-generalized stiffness of the ith normal mode;K_(i)(t)-generalized load of the ith normal mode;Y_(i)(t)-generalized displacement of the ith normal mode;[M]-matrices of mass;[C]-matrices of damping;{P(t)}-consequence external forces;N_(i)(τ)-interpolation functions;[Ai]-mechanical properties of the structure.
基金Supported by the National Natural Science Foundation of China(No.61871021,51704115)。
文摘As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.
文摘With the rapid development of China's economy, the modernization drive and the process of urbanization continue to advance, land for urban construction is becoming more and tenser and land prices are rising steadily, there are more and more high-rise buildings, its density is also increasing. With the increasing number trend of high-rise building development, anti-seismic building requirement as an important part of architectural design is worthy of our exploration and study. Seismic resistance has become an important subject of engineering design. This paper will discuss the technical principle of seismic design in building structure design, so as to optimize the seismic design of high-rise building structure better.
基金Science and technology research projects of colleges and universities in Inner Mongolia(NJZY22511)Funds for basic scientific research in universities of Inner Mongolia:Key project of Philosophy and Social Science Foundation of Inner Mongolia Agricultural University(BR220603)。
文摘Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main causes of weathering were analyzed on the basis of summarizing the common types of weathering characterization.The results showed that the weathering characterization was mainly reflected in the surface defects of wood structures,such as cracking,discoloration,peeling,wind erosion wear,and so on.The coating technology on the surface of constructions was the main artificial factor affecting the surface defects of constructions.In the case of similar surface decoration conditions,sunlight and moisture were the main natural factors affecting the weathering of wooden buildings,which will promote the process of weathering.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
文摘Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.
文摘Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.
基金Supported by National Science Fund for Distinguished Young Scholars of China (No. 50425824)
文摘The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.