Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab...To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.展开更多
Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond de...Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode.展开更多
In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a ...In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.展开更多
Underground mine fire always exists since the mining activity was practiced.It poses a severe safety hazard to the mine workers and may also cause a tremendous economic loss to the mines.Methods for controlling and ex...Underground mine fire always exists since the mining activity was practiced.It poses a severe safety hazard to the mine workers and may also cause a tremendous economic loss to the mines.Methods for controlling and extinguishing fires in underground mine have long been studied and there have been significant improvements.In order to know clearly about the firefighting technology used,this paper summarizes most of the underground mine firefighting methods used in the United States the past 150 years.This paper describes not only the accepted firefighting theories,but also the technologies,both direct and indirect attacking,in accordance to regulations or codes,with special attention is given to the indirect attack method and its related technologies.Further research needed is also briefly discussed at the end of this paper.展开更多
To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element i...To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.展开更多
Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, th...Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic- and wind-resistant performance objectives are first reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfied by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.展开更多
This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions betwe...This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.展开更多
Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Sc...Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized.展开更多
It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grou...It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.展开更多
For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise...For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.展开更多
Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground ...Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions.展开更多
In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents...In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents a new control method to restrain the sway of both ropes. This study considers varying rope lengths during elevator operation which cause other system parameters such as natural frequency, and damping ratio to be time-variant variables. The dynamics of the ropes are analyzed by solving the governing non-stationary, nonlinear equation numerically. In order to mitigate the vibration of ropes in several motion conditions, particularly upwards movement, downward movement, stopped at the lowest position, and stopped at the highest position, an active equipment is installed at the compensation sheave. The stability of the system using the controller is analyzed at four states: without disturbance and static car, without disturbance and mobile car, including disturbance and static car, and including disturbance and mobile car. The efficiency of the controller used for dampening the vibration of elevator ropes is validated by numerical simulation results.展开更多
This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The resu...This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The results show that with the influence of adjacent high-rise building, numerical simulation is a good way to study the wind field around high-rise building and the distribution of wind pressure on building’ surface. The pressures on the windward surface are positive with the maximum at 2/3 H height and have lower values on the top and bottom. The pressures on the leeward surface and two sides were negative. Due to the serious flow separation at the corner of building’s windward, the wind field has a high turbulent kinetic energy.展开更多
Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on ...Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on the turbulent flow that drives the scour process.In this study,the characteristics of the turbulent flow fields around an HRSF were investigated using the particle image velocimetry technique.The mean flow,vorticity,and turbulence intensity were analyzed in detail.The relationship between the flow feature and scour development around an HRSF was elaborated.The results showed that the flow velocity increased to its maximum value near the third row of the pile group.The shear layer and wake vortices could not be fully developed downstream of the last row of the piles at small Reynolds numbers.The strong flow and turbulent fluctuation near the third piles explained the existence of a longtail scour pattern starting from the HRSF shoulders and a trapezoidal deposition region directly downstream of HRSF.This laboratory experiment gains insight into the mechanism of the turbulent flow around HRSFs and provides a rare dataset for numerical model verifications.展开更多
The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order...The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order to provide more realistic considerations of seismic demand,seismic response,and seismic capacity.Based on the aforementioned provisions,structures designed according to different seismic codes may yield different performances for the same level of hazard.This study aims to investigate and compare the induced responses related to the earthquake-resistant design of reinforced concrete(RC)buildings according to the Saudi building code(SBC-301),American code(ASCE-7),uniform building code(UBC-97),and European code(EC-8).In order to account for the provision regarding the hazard specification and its effect on the induced seismic responses,four regions in the Kingdom of Saudi Arabia with different seismic levels are selected.The code provisions related to the specification of site classification and its effect on the induced design base shear are investigated as well.Significant differences are observed in the induced responses with the variation in seismic design codes for the considered seismic hazards and site classifications.展开更多
【Title】 This study explores the optimal spatial allocation of initial attack resources for firefighting in the Republic of Korea. To improve the effectiveness of Korean initial attack resources with a range of polic...【Title】 This study explores the optimal spatial allocation of initial attack resources for firefighting in the Republic of Korea. To improve the effectiveness of Korean initial attack resources with a range of policy goals, we create a scenario optimization model that minimizes the expected number of fires not receiving a predefined response. In this study, the predefined response indicates the number of firefighting resources that must arrive at a fire before the fire escapes and becomes a large fire. We use spatially explicit GIS-based information on the ecology, fire behavior, and economic characterizations important in Korea. The data include historical fire events in the Republic of Korea from 1991 to 2007, suppression costs, and spatial information on forest fire extent. Interviews with forest managers inform the range of we address in the decision model. Based on the geographic data, we conduct a sensitivity analysis by varying the parameters systematically. Information on the relative importance of the components of the settings helps us to identify “rules of thumb” for initial attack resource allocations in particular ecological and policy settings.展开更多
Water mist technology provides efficient firefighting performance while there is still room for improvement. So varieties of additives have been studied in recent years both at home and abroad. The self-made additives...Water mist technology provides efficient firefighting performance while there is still room for improvement. So varieties of additives have been studied in recent years both at home and abroad. The self-made additives are used to compare the firefighting performance of diesel and heptane fire in open space. By adjusting the concentration of substance in the additives and conducting the experiment under the pressure of 0.3 MPa,0.5 MPa and 0.7 MPa,extinguish time and temperature are measured in the experiment. Through the experiments using different fuels,it can be found when the fuel is heptane that has a lower ignition point and a higher evaporation rate, the water mist additive can still significantly improve the firefighting performance. According to the data based on different concentrations of fluorinated surfactants,we find that fluorinated surfactants are the main substance to improve the performances by changing physical property of water mist. Optimal proportion of the additives for firefighting performance is found by experiment results.展开更多
Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning fo...Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.展开更多
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
基金supported by the Natural Science Foundation of China(52122811)。
文摘To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.
基金Heilongjiang Province Application Technology Research and Development under Grant No.GX16C007National Key Research and Development Program of China under Grant No.2017YFC1500605
文摘Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371,62003029)Beijing Natural Science Foundation(JQ20026)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.
文摘Underground mine fire always exists since the mining activity was practiced.It poses a severe safety hazard to the mine workers and may also cause a tremendous economic loss to the mines.Methods for controlling and extinguishing fires in underground mine have long been studied and there have been significant improvements.In order to know clearly about the firefighting technology used,this paper summarizes most of the underground mine firefighting methods used in the United States the past 150 years.This paper describes not only the accepted firefighting theories,but also the technologies,both direct and indirect attacking,in accordance to regulations or codes,with special attention is given to the indirect attack method and its related technologies.Further research needed is also briefly discussed at the end of this paper.
基金National Natural Science Foundation of China Under Grant No.50878147
文摘To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.
基金Financial Support from Hong Kong PolytechnicUniversity Under Grant No. G-YX76
文摘Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic- and wind-resistant performance objectives are first reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfied by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.
基金Project supported by the National Natural Science Foundation of China (No. 50378041) and the Specialized Research Fund for theDoctoral Program of Higher Education (No. 20030487016), China
文摘This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.
基金supported by National Basic Research Program of China (2012CB719702)
文摘Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized.
基金supported by Beijing University of Civil Engineering and Architecture Nature Science(ZF16078,X18067)
文摘It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.
基金National Natural Science Foundation of China Under Grant No.50908044 Jiangsu Provincial Natural Science Foundation of China Under Grant No.SBK201123270 a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and StateKey Lab of Subtropical Building Science,South China University of Technology Under Grant No.2011KA05
文摘For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.
基金Project(50978198) supported by the National Natural Science Foundation of ChinaProject(SLDRCE08-B-03) supported by the Ministry of Science and Technology of China
文摘Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions.
文摘In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents a new control method to restrain the sway of both ropes. This study considers varying rope lengths during elevator operation which cause other system parameters such as natural frequency, and damping ratio to be time-variant variables. The dynamics of the ropes are analyzed by solving the governing non-stationary, nonlinear equation numerically. In order to mitigate the vibration of ropes in several motion conditions, particularly upwards movement, downward movement, stopped at the lowest position, and stopped at the highest position, an active equipment is installed at the compensation sheave. The stability of the system using the controller is analyzed at four states: without disturbance and static car, without disturbance and mobile car, including disturbance and static car, and including disturbance and mobile car. The efficiency of the controller used for dampening the vibration of elevator ropes is validated by numerical simulation results.
文摘This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The results show that with the influence of adjacent high-rise building, numerical simulation is a good way to study the wind field around high-rise building and the distribution of wind pressure on building’ surface. The pressures on the windward surface are positive with the maximum at 2/3 H height and have lower values on the top and bottom. The pressures on the leeward surface and two sides were negative. Due to the serious flow separation at the corner of building’s windward, the wind field has a high turbulent kinetic energy.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0402605)the National Natural Science Foundation of China(Grant No.51779080)+2 种基金the Fok Ying Tung Education Foundation(Grant No.20190094210001)the Natural Science Foundation of Jiangsu Province(Grant No.BK20191299)the 111 Project of the Ministry of Education and State Administration of Foreign Expert Affairs of China(Grant No.B17015).
文摘Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on the turbulent flow that drives the scour process.In this study,the characteristics of the turbulent flow fields around an HRSF were investigated using the particle image velocimetry technique.The mean flow,vorticity,and turbulence intensity were analyzed in detail.The relationship between the flow feature and scour development around an HRSF was elaborated.The results showed that the flow velocity increased to its maximum value near the third row of the pile group.The shear layer and wake vortices could not be fully developed downstream of the last row of the piles at small Reynolds numbers.The strong flow and turbulent fluctuation near the third piles explained the existence of a longtail scour pattern starting from the HRSF shoulders and a trapezoidal deposition region directly downstream of HRSF.This laboratory experiment gains insight into the mechanism of the turbulent flow around HRSFs and provides a rare dataset for numerical model verifications.
文摘The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order to provide more realistic considerations of seismic demand,seismic response,and seismic capacity.Based on the aforementioned provisions,structures designed according to different seismic codes may yield different performances for the same level of hazard.This study aims to investigate and compare the induced responses related to the earthquake-resistant design of reinforced concrete(RC)buildings according to the Saudi building code(SBC-301),American code(ASCE-7),uniform building code(UBC-97),and European code(EC-8).In order to account for the provision regarding the hazard specification and its effect on the induced seismic responses,four regions in the Kingdom of Saudi Arabia with different seismic levels are selected.The code provisions related to the specification of site classification and its effect on the induced design base shear are investigated as well.Significant differences are observed in the induced responses with the variation in seismic design codes for the considered seismic hazards and site classifications.
文摘【Title】 This study explores the optimal spatial allocation of initial attack resources for firefighting in the Republic of Korea. To improve the effectiveness of Korean initial attack resources with a range of policy goals, we create a scenario optimization model that minimizes the expected number of fires not receiving a predefined response. In this study, the predefined response indicates the number of firefighting resources that must arrive at a fire before the fire escapes and becomes a large fire. We use spatially explicit GIS-based information on the ecology, fire behavior, and economic characterizations important in Korea. The data include historical fire events in the Republic of Korea from 1991 to 2007, suppression costs, and spatial information on forest fire extent. Interviews with forest managers inform the range of we address in the decision model. Based on the geographic data, we conduct a sensitivity analysis by varying the parameters systematically. Information on the relative importance of the components of the settings helps us to identify “rules of thumb” for initial attack resource allocations in particular ecological and policy settings.
基金Opening Fund of State Key Laboratory of Fire Science,University of Science and Technology of China(No.HZ2011-KF04)
文摘Water mist technology provides efficient firefighting performance while there is still room for improvement. So varieties of additives have been studied in recent years both at home and abroad. The self-made additives are used to compare the firefighting performance of diesel and heptane fire in open space. By adjusting the concentration of substance in the additives and conducting the experiment under the pressure of 0.3 MPa,0.5 MPa and 0.7 MPa,extinguish time and temperature are measured in the experiment. Through the experiments using different fuels,it can be found when the fuel is heptane that has a lower ignition point and a higher evaporation rate, the water mist additive can still significantly improve the firefighting performance. According to the data based on different concentrations of fluorinated surfactants,we find that fluorinated surfactants are the main substance to improve the performances by changing physical property of water mist. Optimal proportion of the additives for firefighting performance is found by experiment results.
基金Supported by the National Natural Science Foundation of China(11072035)
文摘Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.