Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Informati...Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.展开更多
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec...The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.展开更多
First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relat...First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.展开更多
As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the ...As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.展开更多
In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods ...In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method.展开更多
To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as...To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.展开更多
Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is propose...Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is proposed, which reflects the inheritable and transferable characteristics of related information among multi-scale representation objects, and takes the attribute effects into account. Then the basic idea, the overall framework and the technical flow of the interpolation are put forward, at the samet:me synthetical weight function of the interpolation method is defined and described. The method and technical strategies of object selection are extended, and the key problems are solved, including the dejign of the objective quantitative and structural selections based on the weight values, the interpolation experiment strategies and technical flows, the result of the test shows that the object interpolation method not only inherits the objects at smaller scales, but also takes the attribute effect into account when deriving objects from larger scales according to the road importance, which is a guarantee to objective selection of the road objects at middle scales.展开更多
Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different su...Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.展开更多
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an...Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.展开更多
Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transpor...Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.展开更多
A new approach to select anoptimal set of test points is proposed. The described method uses fault-wise table and multi-objective genetic algorithm to find the optimal set of test points. First, the fault-wise table i...A new approach to select anoptimal set of test points is proposed. The described method uses fault-wise table and multi-objective genetic algorithm to find the optimal set of test points. First, the fault-wise table is constructed whose entries are measurements associated with faults and test points. The selection of optimal test points is transformed to the selection of the columns that isolate the rows of the table. Then, four objectives are described according to practical test requirements. The multi-objective genetic algorithm is explained. Finally, the presented approach is illustrated by a practical example. The results indicate that the proposed method can efficiently and accurately find the optimal set of test points and is practical for large scale systems.展开更多
The combined selection index used in the breeding of new Yorkshire dam line with high prolificacy according to breeding objects was formulated as /:2.272E- BVNB-0.056EBVDAYS. After 5 generations breeding, the two mai...The combined selection index used in the breeding of new Yorkshire dam line with high prolificacy according to breeding objects was formulated as /:2.272E- BVNB-0.056EBVDAYS. After 5 generations breeding, the two main selected traits such as total number of born and age at 100 kg weight was 12.17 piglets/litter and 165.18 d, respectively. The genetic improvements per generates was 0.156 and -2.198, respec- tively. The breeding objects of the new Yorkshire dam line with high prolificacy were basically reached. It indicated that the methods and index could be used in pig breeding.展开更多
The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimizat...The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.展开更多
Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named...Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution.展开更多
近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光...近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。展开更多
文摘Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.
基金financial support from Teesside University to support the Ph.D. program of the first author.
文摘The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.
文摘First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.
基金Supported by the National Natural Science Foundation of China(No.61871021,51704115)。
文摘As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.
文摘In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method.
文摘To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.
基金Supported by the National Natural Science Foundation of China (No. 40701147), the Natural Science Foundation of Beijing (No. 8102014), and the Posoctoral Science Foundation of China (Special Issue) (No. 200801096).
文摘Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is proposed, which reflects the inheritable and transferable characteristics of related information among multi-scale representation objects, and takes the attribute effects into account. Then the basic idea, the overall framework and the technical flow of the interpolation are put forward, at the samet:me synthetical weight function of the interpolation method is defined and described. The method and technical strategies of object selection are extended, and the key problems are solved, including the dejign of the objective quantitative and structural selections based on the weight values, the interpolation experiment strategies and technical flows, the result of the test shows that the object interpolation method not only inherits the objects at smaller scales, but also takes the attribute effect into account when deriving objects from larger scales according to the road importance, which is a guarantee to objective selection of the road objects at middle scales.
文摘Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.
文摘Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.
基金supported by the Advanced Research Project of a National Department of China under Grant No.51317040102
文摘A new approach to select anoptimal set of test points is proposed. The described method uses fault-wise table and multi-objective genetic algorithm to find the optimal set of test points. First, the fault-wise table is constructed whose entries are measurements associated with faults and test points. The selection of optimal test points is transformed to the selection of the columns that isolate the rows of the table. Then, four objectives are described according to practical test requirements. The multi-objective genetic algorithm is explained. Finally, the presented approach is illustrated by a practical example. The results indicate that the proposed method can efficiently and accurately find the optimal set of test points and is practical for large scale systems.
基金Supported by National Science and Technology Support Plan during the Eleventh Five-year Plan(2006BAD01A08-02)Hubei Agricultural Innovation Program(2007-620-004-003)Special Fund for Modern Pig Production Technology Construction(NYCYTX-009)~~
文摘The combined selection index used in the breeding of new Yorkshire dam line with high prolificacy according to breeding objects was formulated as /:2.272E- BVNB-0.056EBVDAYS. After 5 generations breeding, the two main selected traits such as total number of born and age at 100 kg weight was 12.17 piglets/litter and 165.18 d, respectively. The genetic improvements per generates was 0.156 and -2.198, respec- tively. The breeding objects of the new Yorkshire dam line with high prolificacy were basically reached. It indicated that the methods and index could be used in pig breeding.
基金Sponsored by the Natural Science Foundation of Liaoning Province in China(Grant No.20022106).
文摘The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution.
文摘近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。