期刊文献+
共找到1,809篇文章
< 1 2 91 >
每页显示 20 50 100
High-Rise Residential Reinforced Concrete Building Optimisation
1
作者 Haibei Xiong Miguel Angel Hidalgo Calvo 《Open Journal of Civil Engineering》 2015年第4期437-450,共14页
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ... In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure. 展开更多
关键词 STRUCTURE Optimisation high-rise RESIDENTIAL reinforced concrete Buildings Shear-Wall STRUCTURE Deep PILES Post GROUTING
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:5
2
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Evaluation of the fishbone model in simulating the seismic response of multistory reinforced concrete moment-resisting frames 被引量:4
3
作者 Qu Zhe Gong Ting +1 位作者 Li Qiqi Wang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期315-330,共16页
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulati... The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns. 展开更多
关键词 FISHBONE MODEL reinforced concrete frame strong column-weak beam column-beam stiffness ratio incremental dynamic analysis
下载PDF
Experimental study on the seismic response of braced reinforced concrete frame with irregular columns 被引量:6
4
作者 Xiao Jianzhuang Li Jie Chen Jun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期487-494,共8页
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K... A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China. 展开更多
关键词 seismic response reinforced concrete braced frame irregular columns
下载PDF
Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces 被引量:1
5
作者 Nasim S. Moghaddasi B Zhang Yunfeng Hu Xiaobin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期91-105,共15页
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp... This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand. 展开更多
关键词 BRACE composite confined concrete glass-fiber-reinforced polymer frame nonlinear analysis RETROFIT seismic
下载PDF
Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns
6
作者 李忠献 景萌 +1 位作者 郝永昶 康谷贻 《Transactions of Tianjin University》 EI CAS 2005年第6期412-416,共5页
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und... Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one. 展开更多
关键词 reinforced concrete frame seismic behavior split column short column model experiment
下载PDF
Research on Seismic Reliability and Damage of Reinforced Concrete Frame
7
作者 Xin WANG ding LIU 《International Journal of Technology Management》 2015年第5期90-92,共3页
This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, ... This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, combined the method of analytical approximation degree of structure reliability with Performance-Based Seismic Design (PBSD), put forward the analysis method of structural reliability and the performance of the global seismic fragility, are calculated by using the finite element reliability method of structures global seismic fragility. Taking the maximum interlamination relative deformation as indicators of overall performance, we analyze seismic fragility of five storey RC frame structure, rendering the seismic fragility curves corresponding to different performance requirements and different earthquake action. 展开更多
关键词 reinforced concrete frame structure VULNERABILITY RELIABILITY
下载PDF
Effects of edge beams on mechanic behavior under lateral load in reinforced concrete hollow slab-column structure
8
作者 成洁筠 杨建军 唐小弟 《Journal of Central South University》 SCIE EI CAS 2008年第S1期61-66,共6页
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana... In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained. 展开更多
关键词 reinforced concrete HOLLOW slab-column structure edge beam equivalent frame width COEFFICIENT increasing COEFFICIENT
下载PDF
Optimal seismic design of reinforced concrete structures under timehistory earthquake loads using an intelligent hybrid algorithm
9
作者 Sadjad Gharehbaghi Mohsen Khatibinia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期97-109,共13页
A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismi... A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads. 展开更多
关键词 optimal seismic design reinforced concrete frames earthquake loads particle swarm optimization intelligent regression model support vector machine
下载PDF
Seismic Response of Reinforced Concrete Buildings Retrofitted with Dissipative Steel Braces
10
作者 Luigi Di Samo Gaenato Manfredi 《Journal of Civil Engineering and Architecture》 2010年第2期8-24,共17页
The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. in... The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted. 展开更多
关键词 Seismic retrofitting dissipative braces reinforced concrete frames response analysis earthquakes.
下载PDF
Performance evaluation of low-rise infilled reinforced concrete frames designed by considering local effects on column shear demand
11
作者 Jarun SRECHAI Wongsa WARARUKSAJJA +1 位作者 Sutat LEELATAVIWAT Suchart LIMKATANYU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第5期686-703,共18页
The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength ... The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness.However,local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the infill wall,which can result in failure or in serious situations,collapse.In this study,the effectiveness of a design strategy to consider the complex infill wall interaction was investigated.The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand.The performance of these frames was assessed using nonlinear static,and dynamic analyses.The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions.It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength,the failure modes were different.The proposed method can eliminate the column shear failure from the building.Finally,the merits and limitations of this approach are discussed and summarized. 展开更多
关键词 reinforced concrete frames infill wall seismic design method shear failure wall-frame interaction
原文传递
The Structural Behavior of Low/Medium/High Rise Concrete Office Buildings in Kuwait 被引量:1
12
作者 Tarek A. Awida 《Journal of Civil Engineering and Architecture》 2010年第10期59-65,共7页
The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of bu... The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait. 展开更多
关键词 Low/medium/high-rise structures office buildings finite element reinforced concrete analysis and design.
下载PDF
设有叠合柱的局部错层RC框架结构地震易损性分析 被引量:1
13
作者 张淑云 刘建波 +2 位作者 代慧娟 王乐 高欣悦 《中国科技论文》 CAS 2024年第3期275-283,共9页
为研究某一设有叠合柱的局部错层钢筋混凝土(reinforced concrete,RC)框架结构在近断层和远场地震作用下的破坏概率,自定义钢管混凝土叠合柱塑性铰参数,并与试验对比验证塑性铰参数的有效性。采用SAP2000建立非线性分析模型,选取近断层... 为研究某一设有叠合柱的局部错层钢筋混凝土(reinforced concrete,RC)框架结构在近断层和远场地震作用下的破坏概率,自定义钢管混凝土叠合柱塑性铰参数,并与试验对比验证塑性铰参数的有效性。采用SAP2000建立非线性分析模型,选取近断层和远场地震波共22条,分别以地震峰值加速度(peak ground acceleration,PGA)和最大层间位移角作为地震动强度指标和结构性能指标,基于增量动力分析(incremental dynamic analysis,IDA)结果和点估计函数对错层框架结构进行易损性分析。结果表明:对于远场地震动,结构满足“三水准”抗震设防要求,在罕遇地震下超越防止倒塌极限状态的概率仅为0.24%;结构在近断层多遇地震下仍能满足“小震不坏”的设计要求,设防地震下结构超越修复后使用极限状态的概率为53.63%,发生中等破坏的概率较大,罕遇地震下结构达到倒塌极限状态的概率为5.37%,较远场地震作用破坏更为严重。研究结果可为错层框架结构的设计和地震风险评估提供参考。 展开更多
关键词 近断层地震 错层框架结构 钢管混凝土叠合柱 增量动力分析 点估计
下载PDF
装配式型钢混凝土叠合框架梁连接节点构造设置与安全分析 被引量:1
14
作者 林琳 《佳木斯大学学报(自然科学版)》 CAS 2024年第1期111-114,共4页
住房和城乡建设部印发《“十四五”建筑业发展规划》提出大力发展装配式建筑、推动生产和施工智能化升级的主要任务。而国内目前采用的预制叠合框架梁存在着跨度大自重大吊装成本高、预制梁柱节点位置易发生钢筋碰撞吊装定位难度大等问... 住房和城乡建设部印发《“十四五”建筑业发展规划》提出大力发展装配式建筑、推动生产和施工智能化升级的主要任务。而国内目前采用的预制叠合框架梁存在着跨度大自重大吊装成本高、预制梁柱节点位置易发生钢筋碰撞吊装定位难度大等问题,限制了装配式建筑结构的发展。结合实际工程项目,提出一种新型的装配式型钢混凝土叠合框架梁,并对该叠合梁的构造设置、连接方式及安全性进行分析,从而为装配式框架结构、框架—剪力墙结构等装配式建筑中框架梁的深化设计提供一种新的拆分方案。 展开更多
关键词 装配式建筑 型钢混凝土结构 叠合框架梁 构造设置 安全性分析
下载PDF
附设黏滞阻尼器的RC框架结构抗震韧性评估
15
作者 张皓 阮鹏飞 +1 位作者 李宏男 侯世伟 《振动与冲击》 EI CSCD 北大核心 2024年第14期172-179,210,共9页
为研究黏滞阻尼器对钢筋混凝土(reinforced concrete,RC)框架结构抗震韧性影响,基于增量动力时程分析方法,对附设黏滞阻尼器的RC框架结构开展抗震韧性能力评估。结合FEMA P-58以及我国抗震韧性评价标准,将主要受损构件的修复费用、修复... 为研究黏滞阻尼器对钢筋混凝土(reinforced concrete,RC)框架结构抗震韧性影响,基于增量动力时程分析方法,对附设黏滞阻尼器的RC框架结构开展抗震韧性能力评估。结合FEMA P-58以及我国抗震韧性评价标准,将主要受损构件的修复费用、修复时间曲线以及易损性信息按实际情况进行相应修正,并对无控结构和有控结构的修复费用、修复时间和人员伤亡等主要抗震韧性指标进行对比分析,明确了黏滞阻尼器对RC框架结构抗震韧性的影响。研究表明,在RC框架结构中适当设置黏滞阻尼器不仅能够减小结构地震响应、降低结构破坏概率,还能有效提升结构抗震韧性。 展开更多
关键词 钢筋混凝土(RC)框架结构 黏滞阻尼器 增量动力时程分析 抗震韧性
下载PDF
RC框架梁端负弯矩纵筋部分置于梁侧楼板对性能的影响及构造问题分析
16
作者 郑宏宇 黄林普 +2 位作者 柯晓军 许成浩 范博文 《建筑结构》 北大核心 2024年第6期74-77,31,共5页
为适应建筑多功能、大跨度、重荷载、高抗震的发展要求,框架梁端部负弯矩纵筋配筋率通常较高,节点区钢筋过于密集,混凝土施工质量不易保证,对结构综合性能有不利影响。先对梁端负弯矩纵筋部分设置于梁侧楼板内(简称APNRFS)的布筋方式进... 为适应建筑多功能、大跨度、重荷载、高抗震的发展要求,框架梁端部负弯矩纵筋配筋率通常较高,节点区钢筋过于密集,混凝土施工质量不易保证,对结构综合性能有不利影响。先对梁端负弯矩纵筋部分设置于梁侧楼板内(简称APNRFS)的布筋方式进行阐述,然后基于试验结果分析探讨了该配筋方式对结构性能带来的变化及相关构造问题。研究表明:梁端采用APNRFS布筋方式一般不会降低框架梁的承载力;梁端的弯曲变形能力和结构抗震性能有一定提高;移至板内的梁负筋布置宽度宜小于有效翼缘宽度范围;移至板内的梁端负筋宜同时兼作楼板负筋;横向分布筋参与受力,设计中应适当增配。 展开更多
关键词 钢筋混凝土 框架梁 负弯矩纵筋 楼板 钢筋布置 剪力滞
下载PDF
提升RC框架结构抗震韧性的冗余柱性能分析
17
作者 王海东 黄敬麟 +2 位作者 伍隋文 陈大川 蒋德松 《土木工程与管理学报》 2024年第4期22-29,43,共9页
本文提出了一种通过设置可更换冗余柱以增强钢筋混凝土框架结构抗震韧性的方法。通过冗余柱纵筋在钢筋机械套筒里的锚固长度以控制冗余柱与框架连接节点处的钢筋失效,节点的刚性连接转变为铰链连接。以钢筋直径和锚固长度为变量,对钢筋... 本文提出了一种通过设置可更换冗余柱以增强钢筋混凝土框架结构抗震韧性的方法。通过冗余柱纵筋在钢筋机械套筒里的锚固长度以控制冗余柱与框架连接节点处的钢筋失效,节点的刚性连接转变为铰链连接。以钢筋直径和锚固长度为变量,对钢筋机械连接套筒试件进行了13组拉伸试验和6组高应力拉压试验,每组包含3个试件,一个试件包含两段钢筋和一个机械套筒。试验结果表明,适当设计机械连接套筒锚固长度,可实现可控成铰性能。将实测数据应用于冗余柱的截面和构件仿真分析中,证明可通过改变钢筋于套筒锚固长度控制当冗余柱极限变形达到设计值时柱端自动成铰,使冗余柱损坏后仍为关键结构柱提供竖向承载能力,同时保护关键柱在遭遇强震时不易发生严重破坏。 展开更多
关键词 可更换冗余柱 钢筋机械连接套筒 钢筋混凝土框架结构
下载PDF
乌兹别克斯坦9度区某超高层建筑结构设计与优化
18
作者 闫锋 花炳灿 安东亚 《建筑结构》 北大核心 2024年第13期51-56,共6页
对于9度设防地区的超高层建筑,其结构设计基本由地震作用控制,因此抗震设计尤为重要。建筑消能减震技术可在提高结构地震安全储备的同时,降低整体工程造价,是结构优化设计的有效措施。对位于9度区的超高层建筑进行了结构方案选型对比、... 对于9度设防地区的超高层建筑,其结构设计基本由地震作用控制,因此抗震设计尤为重要。建筑消能减震技术可在提高结构地震安全储备的同时,降低整体工程造价,是结构优化设计的有效措施。对位于9度区的超高层建筑进行了结构方案选型对比、结构方案优化、减震设计方案比选、剪力墙内嵌钢板优化。结果显示,钢骨混凝土框架⁃核心筒方案相对于钢框架⁃支撑方案具备更高的成本优势;框架⁃核心筒方案可通过精细化设计作进一步优化;在此基础上,对钢骨混凝土框架⁃核心筒方案采用两种消能减震方案进行比选,结果表明,采用黏滞阻尼器方案的结构抗震性能明显优于采用黏滞阻尼墙方案;最后通过增大剪力墙竖向分布钢筋配筋率,对低区核心筒墙肢中的内嵌钢板进行了优化。 展开更多
关键词 9度抗震设防 超高层建筑 钢骨混凝土结构 框架⁃核心筒 消能减震
下载PDF
考虑结构空间作用的RC框架梁轴向约束刚度研究
19
作者 季静 黄芷若 +4 位作者 丁迅 杨坚 林鹏 郑振光 韩小雷 《建筑结构》 北大核心 2024年第20期112-120,111,共10页
为真实反映结构对框架梁的空间约束作用,提出了轴向约束刚度指标以量化结构空间约束,并建立可模拟框架结构空间约束作用的数值模型。对比足尺框架结构试验数据表明,按规范计算的框架梁抗弯承载力与试验值相对误差为42%~75%,考虑结构轴... 为真实反映结构对框架梁的空间约束作用,提出了轴向约束刚度指标以量化结构空间约束,并建立可模拟框架结构空间约束作用的数值模型。对比足尺框架结构试验数据表明,按规范计算的框架梁抗弯承载力与试验值相对误差为42%~75%,考虑结构轴向约束作用后相对误差缩小至25%以内,说明该模型可较好地模拟框架结构轴向约束作用,验证了该数值模型的合理性和可靠性。在有限元软件SAP2000中建立等效弹性数值模型,通过单参数分析得到对RC框架梁轴向约束刚度有显著影响的关键变量。在常见工程的取值范围内对关键变量进行充分的排列组合,开展规模化数值分析并总结结构空间约束的作用机理与RC框架梁极限状态下轴向约束刚度分布规律,得出了极限状态下RC框架梁轴向约束刚度的计算方法。 展开更多
关键词 钢筋混凝土框架结构 结构空间作用 轴向约束刚度 规模化数值分析 分布规律 回归分析
下载PDF
形状记忆合金混凝土框架建筑抗震性能研究
20
作者 岳鹏威 《地震工程学报》 CSCD 北大核心 2024年第2期302-308,共7页
地震作用会造成钢筋混凝土框架发生平面和垂直方向的变形,导致其结构受到更大的地震力,加剧损伤程度。形状记忆合金(SMA)材料在外力作用下能够快速恢复变形前形状,降低框架损伤程度,进一步提高框架结构的承载能力和稳定性。基于此,有必... 地震作用会造成钢筋混凝土框架发生平面和垂直方向的变形,导致其结构受到更大的地震力,加剧损伤程度。形状记忆合金(SMA)材料在外力作用下能够快速恢复变形前形状,降低框架损伤程度,进一步提高框架结构的承载能力和稳定性。基于此,有必要研究形状记忆合金混凝土框架建筑的抗震性能。以某实际工程为例,采用ANSYS软件建立钢筋混凝土框架有限元模型,选取天津地震波、北岭地震波、印度洋地震波及人工地震波作为地震震动输入,记录地震震动下时程结果。研究结果表明,预应力筋断裂后,该结构在地震作用下的滞回曲线为饱满的旗帜形,最大层间位移为1/125,残余变形在±10 mm之间,最高峰值荷载为211 kN,水平承载力较强,表明其自复位性能较高、地震响应效果较优、抗震承载力较强,可以有效提高建筑结构的安全性和可靠性。 展开更多
关键词 SMA支撑框架 自复位 钢筋混凝土框架 抗震性能 地震波
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部